BazEkon - Biblioteka G艂贸wna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny g艂贸wne

Autor
Bouabsa Wahiba (University Djillali LIABES of Sidi Bel Abbes, Algeria)
Tytu艂
Unform in Bandwith of the Conditional Distribution Function with Functional Explanatory Variable: The Case of Spatial Data with the K Nearest Neighbour Method
Warunkowa funkcja rozk艂adu z funkcjonaln膮 zmienn膮 wyja艣niaj膮c膮: przypadek danych przestrzennych i metody k-najbli偶szego s膮siada
殴r贸d艂o
Econometrics. Advances in Applied Data Analysis, 2022, vol. 26, nr 2, s. 30-46, bibliogr. 40 poz.
Ekonometria
S艂owa kluczowe
Analiza danych funkcjonalnych, Analiza danych, Ekonometria
Functional data analysis, Data analysis, Econometrics
Uwagi
Klasyfikacja JEL: C13, C14, C15
streszcz., summ.
Abstrakt
W artykule opisano nowy estymator funkcji rozk艂adu warunkowego (CDF) u偶ywany, gdy wsp贸艂zmienne maj膮 charakter funkcjonalny. Ten estymator jest po艂膮czeniem obu procedur: k-najbli偶szego s膮siada i przestrzennej estymacji funkcjonalnej.(abstrakt oryginalny)

In this paper the author introduced a new conditional distribution function estimator, in short (cdf), when the co-variables are functional in nature. This estimator is a mix of both procedures the k Nearest Neighbour method and the spatial functional estimation.(original abstract)
Dost臋pne w
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka G艂贸wna Uniwersytetu Ekonomicznego we Wroc艂awiu
Pe艂ny tekst
Poka偶
Bibliografia
Poka偶
  1. Almanjahie, I., Aissiri, K., Laksaci, A., and Chiker el Mezouar, Z. (2020). The k nearest neighbors smoothing of the relative-error regression with functional regressor. Communications in Statistics - Theory and Methods, 356(10), 1-14.
  2. Attouch, M., Bouabsa, W., and Chiker el Mozoaur, Z. (2018). The 饾憳-nearest neighbors estimation of the conditional mode for functional data under dependency. International Journal of Statistics & Economics, 19(1), 48-60.
  3. Attouch, M., and Bouabsa, W. (2013). The 饾憳-nearest neighbors estimation of the conditional mode for functional data. Rev. Roumaine Math. Pures Appl., 58(4), 393-415.
  4. Attouch, M., Laksaci, A., and Messabihi, N. (2015). Nonparametric relative error regression for spatial random variables, Statistical Papers., 58(4), 987-1008.
  5. Beirlant, J., Berlinet, A., and Biau, G. (2018). Higher order estimation at Lebesgue points. Ann. Inst. Statist. Math., 90(60), 651-677.
  6. Biau, G., and Cadre, B. (2004). Nonparametric spatial prediction. Stat. Inference Stoch. Process, 7(9), 327-349.
  7. Bosq, D. (2000). Linear processes in function spaces: Theory and applications. Lecture Notes in Statistics, (149).
  8. Bouabsa, W. (2021). Nonparametric relative error estimation via functional regressor by the k Nearest neighbors smoothing under truncation random. Applications and Applied Mathematics: An International Journal (AAM), 16(1), 97-116.
  9. Burba, F., Ferraty, F., and Vieu, P. (2009). k-nearest neighbour method in functional nonparametric regression. J. Nonparametr. Stat., 21(4), 453-469.
  10. Carbon, M., Francq, C., and Tran, L.T. (2007). Kernel regression estimation for random fields. J. Statist. Plann. Inference, 137(20), 778-798.
  11. Carbon, M., Tran, L.T and Wu, B. (1997). Kernel density estimation for random fields. Statist. Probab. Lett., 36(12), 115-125.
  12. Cover, T. M. (1968). Estimation by the nearest neighbor rule. IEEE Trans. Inform. Theory, 7(14), 50-55.
  13. Collomb, G. (1981). Estimation non param茅trique de la r茅gression: Revue bibliographique. Internat. Statist. Rev., 18(49), 75-93.
  14. Cressie, N.A. (1991). Statistics for spatial data. New York: Wiley.
  15. Dabo-Niang, S., and Yao, A. F. (2007). Kernel regression estimation for continuous spatial processes. Math. Methods Statist., 16(15), 298-317.
  16. Devroye, L., Gy枚rfi, L., Krzyzak, A. and Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates. Ann. Statist., 20(22), 1371-1385.
  17. Devroye, L. and Wagner, T. (1977). The strong uniform consistency of nearest neighbor density. Ann. Statist., 10(5), 536-540.
  18. Devroye, L. and Wagner, T. (1982). Nearest neighbor methods in discrimination. In Classification, pattern recognition and reduction of dimensionality. Handbook of Statistics, (2).
  19. Dony, J., and Einmahl, U. (2009). Uniformin Bandwidth consistency of Kernel regression estimators at a fixed point. High Dimensional Probability. V: The Luminy Volume, 53(5), 308-325.
  20. Einmahl, U., and Mason, D. (2005). Uniform in bandwidth consistency of Kernel-type function estimators. The Annals of Statistics, 33(3), 1380-403.
  21. El Machkouri, M., and Stoica, R. (2010). Asymptotic normality of kernel estimates in a regression model for random fields. J Nonparametric Stat., 22(15), 955-971.
  22. Ferraty, F., and Vieu, P. (2006). Nonparametric functional data analysis. Theory and practice. New York: Springer-Verlag.
  23. Ferraty, F., Rabhi, A. and Vieu, P. (2008). Estimation non-parametrique de la fonction de hasard avec variable explicative fonctionnelle. Rev. Roumaine Math. Pures Appl., 53(15), 1-18.
  24. Guyon, X. (1987). Estimation d'un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. Proceedings of the Sixth Franco-Belgian Meeting of Statisticians.
  25. Gy枚rfi, L., Kohler, A., Krzyzak, and Walk, H. (2002). A distribution-free theory of nonparametric regression. New York: Springer.
  26. Kara, L. Z., Laksaci, A., and Vieu, P. (2017). Data-driven kNN estimation in nonparametric functional data analysis. Journal of Multivariate Analysis, 153(85), 176-188.
  27. Kudraszow, L. and Vieu, P. (2013). Uniform consistency of kNN regressors for functional variables. Statistics and Probability Letters, 83(15), 1863-1870.
  28. Laksaci, A., and Mechab, B. (2010). Estimation non parametrique de la fonction de hasard avec variable explicative fonctionelle: cas des donn茅es spaciales. Rev. Roumaine Math. Pures Appl., 55(1), 35-51.
  29. Lalo毛, T. (2008). A k-nearest neighbor approach for functional regression. Statistics & Probability Letters, 78(10), 1189-1193.
  30. Li, J., and Tran, L. T. (2007). Hazard rate estimation on random fields. J. Multivariate Anal., 98(15), 1337-1355.
  31. Li, J., and Tran, L. T. (2009). Nonparametric estimation of conditional expectation. J. Statist. Plann. Inference, 139(36), 164-175.
  32. Li, J. P. (1985). Strong convergence rates of error probability estimation in the nearest neighbor discrimination rule. J. Math., 15(5), 113-118.
  33. Lian, H. (2011). Convergence of functional k-nearest neighbor regression estimate with functional responses. Electronic Journal of Statistics, 5(133), 31-40.
  34. Lu, Z. and Chen, X. (2004). Spatial kernel regression: weak consistency. Stat Probab Lett., 68(30), 125-136.
  35. Moore, D., and Yackel, J. (1977). Consistency properties of nearest neighbor density function estimators. Ann. Statist., 20(5), 143-154. Masry, E. (1986). Recursive probability density estimation for weakly dependent stationary processes. IEEE Trans. Inform. Theory., 32(16), 254-267.
  36. Ramsay, J. O., and Silverman, B. W. (2002). Applied functional data analysis. Methods and case studies. New York: Springer-Verlag.
  37. Robinson, P. M. (2011). Asymptotic theory for nonparametric regression with spatial data. J Econom., 165(15), 5-19.
  38. Tran, L.T. (1990). Kernel density estimation on random fields. J. Multivariate Anal., 34(25), 37-53.
  39. Tran, T., Wehrens R., and Buydens, L. (2006). kNN-kernel density-based clustering for high- -dimensional multivariate data. Comput. Statist. Data Anal., 51(81), 513-525.
Cytowane przez
Poka偶
ISSN
1507-3866
J臋zyk
eng
URI / DOI
http://dx.doi.org/10.15611/eada.2022.2.03
Udost臋pnij na Facebooku Udost臋pnij na Twitterze Udost臋pnij na Google+ Udost臋pnij na Pinterest Udost臋pnij na LinkedIn Wy艣lij znajomemu