- Autor
- Bouabsa Wahiba (University Djillali LIABES of Sidi Bel Abbes, Algeria)
- Tytu艂
- Unform in Bandwith of the Conditional Distribution Function with Functional Explanatory Variable: The Case of Spatial Data with the K Nearest Neighbour Method
Warunkowa funkcja rozk艂adu z funkcjonaln膮 zmienn膮 wyja艣niaj膮c膮: przypadek danych przestrzennych i metody k-najbli偶szego s膮siada - 殴r贸d艂o
- Econometrics. Advances in Applied Data Analysis, 2022, vol. 26, nr 2, s. 30-46, bibliogr. 40 poz.
Ekonometria - S艂owa kluczowe
- Analiza danych funkcjonalnych, Analiza danych, Ekonometria
Functional data analysis, Data analysis, Econometrics - Uwagi
- Klasyfikacja JEL: C13, C14, C15
streszcz., summ. - Abstrakt
- W artykule opisano nowy estymator funkcji rozk艂adu warunkowego (CDF) u偶ywany, gdy wsp贸艂zmienne maj膮 charakter funkcjonalny. Ten estymator jest po艂膮czeniem obu procedur: k-najbli偶szego s膮siada i przestrzennej estymacji funkcjonalnej.(abstrakt oryginalny)
In this paper the author introduced a new conditional distribution function estimator, in short (cdf), when the co-variables are functional in nature. This estimator is a mix of both procedures the k Nearest Neighbour method and the spatial functional estimation.(original abstract) - Dost臋pne w
- Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka G艂贸wna Uniwersytetu Ekonomicznego we Wroc艂awiu - Pe艂ny tekst
- Poka偶
- Bibliografia
- Almanjahie, I., Aissiri, K., Laksaci, A., and Chiker el Mezouar, Z. (2020). The k nearest neighbors smoothing of the relative-error regression with functional regressor. Communications in Statistics - Theory and Methods, 356(10), 1-14.
- Attouch, M., Bouabsa, W., and Chiker el Mozoaur, Z. (2018). The 饾憳-nearest neighbors estimation of the conditional mode for functional data under dependency. International Journal of Statistics & Economics, 19(1), 48-60.
- Attouch, M., and Bouabsa, W. (2013). The 饾憳-nearest neighbors estimation of the conditional mode for functional data. Rev. Roumaine Math. Pures Appl., 58(4), 393-415.
- Attouch, M., Laksaci, A., and Messabihi, N. (2015). Nonparametric relative error regression for spatial random variables, Statistical Papers., 58(4), 987-1008.
- Beirlant, J., Berlinet, A., and Biau, G. (2018). Higher order estimation at Lebesgue points. Ann. Inst. Statist. Math., 90(60), 651-677.
- Biau, G., and Cadre, B. (2004). Nonparametric spatial prediction. Stat. Inference Stoch. Process, 7(9), 327-349.
- Bosq, D. (2000). Linear processes in function spaces: Theory and applications. Lecture Notes in Statistics, (149).
- Bouabsa, W. (2021). Nonparametric relative error estimation via functional regressor by the k Nearest neighbors smoothing under truncation random. Applications and Applied Mathematics: An International Journal (AAM), 16(1), 97-116.
- Burba, F., Ferraty, F., and Vieu, P. (2009). k-nearest neighbour method in functional nonparametric regression. J. Nonparametr. Stat., 21(4), 453-469.
- Carbon, M., Francq, C., and Tran, L.T. (2007). Kernel regression estimation for random fields. J. Statist. Plann. Inference, 137(20), 778-798.
- Carbon, M., Tran, L.T and Wu, B. (1997). Kernel density estimation for random fields. Statist. Probab. Lett., 36(12), 115-125.
- Cover, T. M. (1968). Estimation by the nearest neighbor rule. IEEE Trans. Inform. Theory, 7(14), 50-55.
- Collomb, G. (1981). Estimation non param茅trique de la r茅gression: Revue bibliographique. Internat. Statist. Rev., 18(49), 75-93.
- Cressie, N.A. (1991). Statistics for spatial data. New York: Wiley.
- Dabo-Niang, S., and Yao, A. F. (2007). Kernel regression estimation for continuous spatial processes. Math. Methods Statist., 16(15), 298-317.
- Devroye, L., Gy枚rfi, L., Krzyzak, A. and Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates. Ann. Statist., 20(22), 1371-1385.
- Devroye, L. and Wagner, T. (1977). The strong uniform consistency of nearest neighbor density. Ann. Statist., 10(5), 536-540.
- Devroye, L. and Wagner, T. (1982). Nearest neighbor methods in discrimination. In Classification, pattern recognition and reduction of dimensionality. Handbook of Statistics, (2).
- Dony, J., and Einmahl, U. (2009). Uniformin Bandwidth consistency of Kernel regression estimators at a fixed point. High Dimensional Probability. V: The Luminy Volume, 53(5), 308-325.
- Einmahl, U., and Mason, D. (2005). Uniform in bandwidth consistency of Kernel-type function estimators. The Annals of Statistics, 33(3), 1380-403.
- El Machkouri, M., and Stoica, R. (2010). Asymptotic normality of kernel estimates in a regression model for random fields. J Nonparametric Stat., 22(15), 955-971.
- Ferraty, F., and Vieu, P. (2006). Nonparametric functional data analysis. Theory and practice. New York: Springer-Verlag.
- Ferraty, F., Rabhi, A. and Vieu, P. (2008). Estimation non-parametrique de la fonction de hasard avec variable explicative fonctionnelle. Rev. Roumaine Math. Pures Appl., 53(15), 1-18.
- Guyon, X. (1987). Estimation d'un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. Proceedings of the Sixth Franco-Belgian Meeting of Statisticians.
- Gy枚rfi, L., Kohler, A., Krzyzak, and Walk, H. (2002). A distribution-free theory of nonparametric regression. New York: Springer.
- Kara, L. Z., Laksaci, A., and Vieu, P. (2017). Data-driven kNN estimation in nonparametric functional data analysis. Journal of Multivariate Analysis, 153(85), 176-188.
- Kudraszow, L. and Vieu, P. (2013). Uniform consistency of kNN regressors for functional variables. Statistics and Probability Letters, 83(15), 1863-1870.
- Laksaci, A., and Mechab, B. (2010). Estimation non parametrique de la fonction de hasard avec variable explicative fonctionelle: cas des donn茅es spaciales. Rev. Roumaine Math. Pures Appl., 55(1), 35-51.
- Lalo毛, T. (2008). A k-nearest neighbor approach for functional regression. Statistics & Probability Letters, 78(10), 1189-1193.
- Li, J., and Tran, L. T. (2007). Hazard rate estimation on random fields. J. Multivariate Anal., 98(15), 1337-1355.
- Li, J., and Tran, L. T. (2009). Nonparametric estimation of conditional expectation. J. Statist. Plann. Inference, 139(36), 164-175.
- Li, J. P. (1985). Strong convergence rates of error probability estimation in the nearest neighbor discrimination rule. J. Math., 15(5), 113-118.
- Lian, H. (2011). Convergence of functional k-nearest neighbor regression estimate with functional responses. Electronic Journal of Statistics, 5(133), 31-40.
- Lu, Z. and Chen, X. (2004). Spatial kernel regression: weak consistency. Stat Probab Lett., 68(30), 125-136.
- Moore, D., and Yackel, J. (1977). Consistency properties of nearest neighbor density function estimators. Ann. Statist., 20(5), 143-154. Masry, E. (1986). Recursive probability density estimation for weakly dependent stationary processes. IEEE Trans. Inform. Theory., 32(16), 254-267.
- Ramsay, J. O., and Silverman, B. W. (2002). Applied functional data analysis. Methods and case studies. New York: Springer-Verlag.
- Robinson, P. M. (2011). Asymptotic theory for nonparametric regression with spatial data. J Econom., 165(15), 5-19.
- Tran, L.T. (1990). Kernel density estimation on random fields. J. Multivariate Anal., 34(25), 37-53.
- Tran, T., Wehrens R., and Buydens, L. (2006). kNN-kernel density-based clustering for high- -dimensional multivariate data. Comput. Statist. Data Anal., 51(81), 513-525.
- Cytowane przez
- ISSN
- 1507-3866
- J臋zyk
- eng
- URI / DOI
- http://dx.doi.org/10.15611/eada.2022.2.03