BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Wach Maciej (KGHM Polska Miedź SA)
Tytuł
The Application of Predictive Analysis in the Management of Investment Project Portfolios
Zastosowanie analizy predykcyjnej w zarządzaniu portfelami projektów inwestycyjnych
Źródło
Informatyka Ekonomiczna / Uniwersytet Ekonomiczny we Wrocławiu, 2021, nr 4 (62), s. 51-60, rys., tab., bibliogr. 19 poz.
Business Informatics / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Zarządzanie portfelem inwestycyjnym, Zarządzanie portfelem projektów, Informatyka ekonomiczna
Management of investment portfolio, Project Portfolio Management (PPM), Business informatics
Uwagi
Klasyfikacja JEL: O22, D81.
streszcz., summ.
Abstrakt
Celem niniejszego artykułu jest wskazanie możliwości zastosowania analityki predykcyjnej w obszarze zarządzania portfelami projektów inwestycyjnych. W pracy zastosowano wnioskowanie dedukcyjne, a jako metodę badawczą wykorzystano krytyczną analizę literatury oraz analizę wybranych przypadków decyzyjnych. Autor przedstawia proces zarządzania portfelami projektów inwestycyjnych z podkreśleniem problemów decyzyjnych oraz wpływu złego zarządzania portfelami na przedsiębiorstwa. Analiza predykcyjna scharakteryzowana została jako narzędzie wspomagające decydentów wraz z wymaganiami co do jej zastosowania w dowolnej organizacji. W efekcie stworzono modelowe podejście zastosowania tej analizy, w którym projekt traktowany jest jako sparametryzowany obiekt, który podąża za wzorcami stworzonymi przez wczesniej realizowane projekty. Określonym problemom decyzyjnym przypisano sugerowane alorytmy predykcyjne. Dodatkowo omówiono najważniejsze ograniczenia proponowanych rozwiązań.(abstrakt oryginalny)

The purpose of this paper is to indicate the possibilities of applying predictive analytics in the area of investment project portfolio management. In the article, deductive reasoning, critical analysis of the literature and the analysis of selected decision cases were used as the research method. The author presents the process of the investment project portfolio management. The decision-making problems are highlighted, along with the consequences that poor portfolio management may have on the enterprise. Predictive analytics is characterised as a tool for aiding decision-makers together with basic requirements for its application in any organization. As a result, a framework is presented, which uses new approach, where project is considered as a parametrised object that follows patterns created by past cases. Predictive algorithms are suggested for specific decision-making problems met by portfolio managers. The author also discusses the limitations of the proposed solutions.(original abstract)
Dostępne w
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Bandara, M., Behnaz, A., Rabhi, F. A., and Demirors, O. (2019). From requirements to data analytics process: An ontology-based approach. Business Process Management Workshops, 543-552. Cham: Springer International Publishing.
  2. Baptestone, R., and Rabechini, R. (2019). The portfolio management and influence in projects of decisions. In New global perspectives on industrial engineering and management (pp. 293-302). Springer International Publishing.
  3. Cooper, R , Edgett, S., and Kleinschmidt, E. (1992). New product portfolio management: Practices and performance. Journal of Product Innovation Management, (16), 333-351.
  4. Crispim, S. F., and Siqueira, L. D. (2014). Alignment of IT projects with organization business models. Gestão & Produção, 21(3), 621-634.
  5. Dinov, I. D. (2018). Data science and predictive analytics: Biomedical and health applications using R data science and predictive analytics: Biomedical and health applications using R. Springer International Publishing.
  6. Elbanna, S. (2006). Strategic decision-making: Process perspectives. International Journal of Management Reviews, (8), 1-20.
  7. El Morr, C., and Ali-Hassan, H. (2019). Analytics in healthcare: a practical introduction. Springer International Publishing.
  8. Etaati, L. (2019). Machine learning with microsoft technologies. Selecting the right architecture and tools for your project. Berkeley, CA: Apress.
  9. Fauser, J., Schmidthuysen, M., Scheffold, B. (2015). The prediction of success in project management. Predictive project analytics. Projektmanagement Aktuell, 26, 66-74.
  10. Klix, F. (1985). Machine learning. An artificial intelligence approach. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 65(11), 568-568.
  11. Kuhn, M., and Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer New York.
  12. McCarthy, R. V., McCarthy, M. M., Ceccucci, W., and Halawi, L. (2019). Applying predictive analytics: Finding value in data. Cham: Springer International Publishing.
  13. Oltmann, J. (2008). Project portfolio management: how to do the right projects at the right time. Newtown Square, PA: Project Management Institute.
  14. Platon, V., and Constantinescu, A. (2014). Monte Carlo method in risk analysis for investment projects. Procedia Economics and Finance, (15), 393-400.
  15. Project Management Institute. (2017). The standard for portfolio management - fourth edition.
  16. Project Management Institute. (2018). Success in disruptive times: Expanding the value delivery landscape to address the high cost of low performance. Pulse of the Profession, 35.
  17. Rebala, G., Ravi, A., and Churiwala, S. (2019). An introduction to machine learning, deep learning and neural networks. Springer International Publishing.
  18. Taylor, J. (2015). Framing requirements for predictive analytic projects with decision modeling. International Institute for Analytics.
  19. Williams, G. (2011). Data mining with rattle and R. The art of excavating data for knowledge discovery. New York: Springer.
Cytowane przez
Pokaż
ISSN
1507-3858
Język
eng
URI / DOI
http://dx.doi.org/10.15611/ie.2021.4.05
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu