BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Dąbrowska Alicja (Wrocław University of Science and Technology, Poland), Giel Robert (Wrocław University of Science and Technology, Poland), Winiarska Klaudia (Wrocław University of Science and Technology, Poland)
Tytuł
Sequencing and Planning of Packaging Lines With Reliability and Digital Twin Concept Considerations - a Case Study of a Sugar Production Plant
Źródło
LogForum, 2022, vol. 18, nr 3, s. 321-334, rys., tab., wykr., bibliogr. 43 poz.
Słowa kluczowe
Planowanie produkcji, Harmonogram, Przemysł spożywczy, Produkcja cukru, Maszyny i urządzenia, Technologie cyfrowe, Technologia produkcji żywności, Studium przypadku
Production planning, Schedule, Food industry, Sugar production, Machinery and equipment, Digital technologies, Food production technology, Case study
Uwagi
summ.
Abstrakt
Background: The study focuses on simplified make-and-pack production in the sugar industry as a case study. The analyzed system is characterized by parallel packing lines, which share one resource with a sequence-independent setup time. Additionally, the special characteristics that occur in many enterprises make scheduling difficult. The special characteristics of the system are the simultaneous occurrence of a variable input stream, scheduling of processes, and including the reliability of machines. Due to the variability of the input parameters, it is appropriate to consider the use of Digital Twin, which is a virtual representation of the real processes' performance. Therefore, this purpose of the paper is two-fold. First, an analysis of sequence determination of the stream-splitting machine was performed with taking into account the impact of logistics system reliability on system performance. Second, the concept of implementing Digital Twin in the analyzed production process is presented. Methods: The mathematical model for line efficiency was developed on the presented make-and-pack production presented in the selected sugar industry. Different sequences of stream-splitting machines were studied to examine the system's efficiency, availability, and utilization of packaging lines. Two scenarios were investigated with the use of computer simulation. Results: Computer simulation experiments were performed to investigate the sequencing and planning of packaging line problems. The results obtained for the case company indicated a significant dependence between the preferred packing sequence and the operational parameters. Conclusions: The simulations confirm the influence of internal and external factors on sugar line packaging processes. The main advantage of the developed simulation model is identifying the relationship between the size of the input stream and the system's availability level, as well as identifying the main constraints on the possibility of implementing the DT concept in the analyzed company. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Acebes L.F., Merino A., Rodriguez A., Mazaeda R., de Prada C., 2019, model based online scheduling of concurrent and equal batch process units: Sugar End industrial case study, Journal of Process Control, 80, 1-14, https://doi.org/10.1016/j.jprocont.2019.05.005
  2. Azizi H., Hakimzadeh V., Golestani H.A., 2016, Purification of Raw Sugar Beet Juice by Electrocoagulation, Ukrainian Food Journal, 5(4), 667-677. http://dx.doi.org/10.24263/2304-974X-2016-5-4-6
  3. Baumann P., Trautmann N., 2013, A continuous-time MILP model for short-term scheduling of make-and-pack production processes, International Journal of Production Research 51(6), 1707-1727, https://doi.org/10.1080/00207543.2012.694489.
  4. Bestjak L., Lindqvist C., 2020, Assessment of how Digital Twin can be utilized in manufacturing companies to create business value, MSc thesis, School of Innovation, Design and Engineering, Eskilstuna, Sweden.
  5. Branke J., Nguyen S., Pickardt C.W., Zhang M., 2016, Automated Design of Production Scheduling Heuristics: A Review, IEEE Transactions on Evolutionary Computation, 20(1), 110-124, https://doi.org/10.1109/TEVC.2015.2429314
  6. Caldwell D.G., Davis S., Masey R.J.M., Gray J.O., 2009, Automation in food processing, In: Nof, S. (ed.) Springer Handbook of Automation, 1041-1059. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-78831-7_60
  7. Chauhan M.K., Varun, Chaudhary S., Kumar S., Samar, 2011, Life cycle assessment of sugar industry: A review, Renewable and Sustainable Energy Reviews, 15(7), 3445-3453, https://doi.org/10.1016/j.rser.2011.04.033
  8. Chen J.C., Cheng CH., Huang P.B., Wang K-J., Huang Ch-J., Ting T-Ch., 2013, Warehouse management with lean and RFID application: a case study, The International Journal of Advanced Manufacturing Technology, 69, 531-542, https://doi.org/10.1007/s00170-013-5016-8
  9. Dotoli M., Fay A., Miśkowicz M., Seatzu C., 2019, An overview of current technologies and emerging trends in factory automation, International Journal of Production Research 57(15-16), 5047-5067, https://doi.org/10.1080/00207543.2018.1510558
  10. Eggleston G., Lima I., 2015, Sustainability issues and opportunities in the sugar and sugar-bioproduct industries, Sustainability, 7(9), 12209-12235, https://doi.org/10.3390/su70912209
  11. Entrup M.L., Günther H.O., Van Beek P., Grunow M., Seiler T., 2005, Mixed-integer linear programming approaches to shelf-life-integrated planning and scheduling in yoghurt production, International Journal of Production Research, 43(23), 5071-5100, https://doi.org/10.1080/00207540500161068
  12. Errandonea I., Beltrán S., Arrizabalaga S., 2020, Digital Twin for maintenance: A literature review, Computers in Industry, 123, 103316, DOI:https://doi.org/10.1016/j.compind.2020.103316
  13. Fuchigami H.Y., Rangel S.,2018, A survey of case studies in production scheduling: Analysis and perspectives, Journal of Computational Science, 25, 425-436, https://doi.org/10.1016/j.jocs.2017.06.004
  14. Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., 1979, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals Of Discrete Mathematics, 5, 287-326, https://doi.org/10.1016/S0167-5060(08)70356-X
  15. Harjunkoski I., Maravelias C.T., Bongers P., Castro P.M., Engell S., Grossmann I.E., Hooker J., Méndez C., Sand G., Wassick J., 2014, Scope for industrial applications of production scheduling models and solution methods, Computers and Chemical Engineering, 62, 161-193, https://doi.org/10.1016/j.compchemeng.2013.12.001
  16. Hecker F.T., Stanke M., Becker T., Hitzmann B., 2014, Application of a modified GA, ACO and a random search procedure to solve the production scheduling of a case study bakery, Expert Systems with Applications, 41(13), 5882-5891, https://doi.org/10.1016/j.eswa.2014.03.047
  17. Iqbal J., Khan Z.H., Khalid A., 2017, Prospects of robotics in food industry, Food Science and Technology 37(2), 159-165, https://doi.org/10.1590/1678-457X.14616
  18. Kondakci T., Zhou W., 2017, Recent Applications of Advanced Control Techniques in Food Industry, Food and Bioprocess Technology, 10(3), 522-542, https://doi.org/10.1007/s11947-016-1831-x
  19. Konstantinov S., Ahmad M., Ananthanarayan K., Harrison R., 2017, The Cyber-physical E-machine Manufacturing System: Virtual Engineering for Complete Lifecycle Support, Procedia CIRP, 63, 119-124, https://doi.org/10.1016/j.procir.2017.02.035
  20. Kopacek P., 2019, Trends in Production Automation, IFAC-PapersOnLine, 52(25), 509-512, https://doi.org/10.1016/j.ifacol.2019.12.595
  21. Kosior K., Digital Twin Technology in The Food Industry Enterprises - Requirements, Potential Applications, Limitations (in Polish), Przemysł Spożywczy, T. 74, 5, 10-14, http://dx.doi.org/10.15199/65.2020.5.2
  22. Liu M., Fang S., Dong H., Xu C., 2021, Review of digital twin about concepts, technologies, and industrial applications, Journal of Manufacturing Systems, 58, Part B, 346-361, https://doi.org/10.1016/j.jmsy.2020.06.017
  23. Méndez C.A., Cerdá J., 2002, An MILP-based approach to the short-term scheduling of make-and-pack continuous production plants, OR Spectrum 24(4), 403-429, https://doi.org/10.1007/s00291-002-0103-5
  24. Merino A., Mazaeda R., Alves R., Rueda A., Acebes L.F., De Prada C., 2006, Sugar factory simulator for operators training, IFAC Proceedings Volumes, 7(PART 1), 259-264, https://doi.org/10.3182/20060621-3-ES-2905.00046
  25. Olivotti D., Dreyer S., Lebek B., Breitner M.H., 2019, Creating the foundation for digital twins in the manufacturing industry: an integrated installed base management system. Information Systems and E-Business Management, 17, 89-116, https://doi.org/10.1007/s10257-018-0376-0
  26. Parthanadee P., Buddhakulsomsiri J., 2010, Simulation modeling and analysis for production scheduling using real-time dispatching rules: A case study in canned fruit industry, Computers and Electronics in Agriculture, 70(1), 245-255, https://doi.org/10.1016/j.compag.2009.11.002
  27. Pinedo M., 2012, Scheduling. Theory, algorithms and systems. Springer-Verlag New York.
  28. Pytlak R., 2014, Optimization of sugar dispatching process, Research in Logistics & Production, 4(2), 105-118.
  29. Rodic B., 2017, Industry 4.0 and the New Simulation Modelling Paradigm, Organizacija, 50, 3, 193-207, https://doi.org/10.1515/orga-2017-0017
  30. Singh M., Fuenmayor E., Hinchy E.P., Qiao Y., Murray N., Devine D., 2021, Digital Twin: Origin to Future, Applied System Innovation, 4(2), 36, https://doi.org/10.3390/asi4020036
  31. Singh S., Shehab E., Higgins N., Fowler K., Tomiyama T., Fowler Ch., 2018, Challenges of Digital Twin in High Value Manufacturing, SAE Technical Paper, https://doi.org/10.4271/2018-01-1928
  32. Souza V., Cruz R., Silva W., Lins S., Lucena V., 2019, A Digital Twin Architecture Based on the Industrial Internet of Things Technologies, IEEE International Conference on Consumer Electronics (ICCE), 1-2, https://doi.org/10.1109/ICCE.2019.8662081
  33. Tabriz S., 2016, Juice extraction from sugar beet by pressing method, Journal of Eco-friendly Agriculture, October, 67-69.
  34. Taner T., Sivrioğlu M., Topal H., Dalkılıç A.S., Wongwises S., 2018, A model of energy management analysis, case study of a sugar factory in Turkey, Sadhana - Academy Proceedings in Engineering Sciences, 43(3), 1-20, https://doi.org/10.1007/s12046-018-0793-2
  35. Tao F., Cheng J., Qi Q.., Zhang M., Zhang H., Fanguyan S., 2017, Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology 94, 3563-3576 https://doi.org/10.1007/s00170-017-0233-1
  36. Tao F., Qi Q., Wang L., Nee A.Y.C., 2019, Digital Twins and Cyber-Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison, Engineering, 5, 4, 2019, 653-661, https://doi.org/10.1016/j.eng.2019.01.014
  37. Toivonen V., Lanz M., Nylund H., Nieminen H., 2018, The FMS Training Center - a versatile learning environment for engineering education, Procedia Manufacturing, 23, 135-140, https://doi.org/10.1016/j.promfg.2018.04.006
  38. Touil A., Echchatbi A., Charkaoui A., 2016, An MILP Model for Scheduling Multistage, Multiproducts Milk Processing, IFAC-PapersOnLine, 49(12), 869-874, https://doi.org/10.1016/j.ifacol.2016.07.884
  39. Um J., Popper J., Ruskowski M., 2018, Modular augmented reality platform for smart operator in production environment, IEEE Industrial Cyber-Physical Systems (ICPS), 720-725, https://doi.org/10.1109/ICPHYS.2018.8390796
  40. Urbaniec K., 2004, The evolution of evaporator stations in the beet-sugar industry, Journal of Food Engineering, 61(4), 505-508, https://doi.org/10.1016/S0260-8774(03)00218-8
  41. VanDerHorn E., Mahadevan S., 2021, Digital Twin: Generalization, characterization and implementation, Decision Support Systems, 145, 113524, https://doi.org/10.1016/j.dss.2021.113524
  42. Yao F., Keller A., Ahmad M., Ahmad B., Harrison R., Colombo A. W., 2018, Optimizing the Scheduling of Autonomous Guided Vehicle in a Manufacturing Process, IEEE 16th International Conference on Industrial Informatics (INDIN), 264-269, https://doi.org/10.1109/INDIN.2018.8471979
  43. Zhang H., Liu Q., Chen X., Zhang D., Leng J., 2017, A Digital Twin-Based Approach for Designing and Multi-Objective Optimization of Hollow Glass Production Line, IEEE Access, 5, 26901-26911, https://doi.org/10.1109/ACCESS.2017.2766453
Cytowane przez
Pokaż
ISSN
1895-2038
Język
eng
URI / DOI
http://dx.doi.org/10.17270/J.LOG.2022.762
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu