BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Mishra Arunendra (National Institute of Food Technology Entrepreneurship and Management, Sonipat, India), Kumar R Prasanth (National Institute of Food Technology Entrepreneurship and Management, Sonipat, India)
Tytuł
Agricultural Commodities: an Integrated Approach to Assess the Volatility Spillover and Dynamic Connectedness
Źródło
Economics and Business Review, 2021, vol. 7 (21), nr 4, s. 28-53, rys., tab., bibliogr. 43 poz
Słowa kluczowe
Ceny produktów rolnych, Produkty rolne, Zmienność poziomu cen, Dynamika cen, Analiza sieciowa
Agricultural prices, Agricultural products, Price level variability, Price dynamics, Network analysis
Uwagi
Klasyfikacja JEL: C32, C50, G15
summ.
Abstrakt
In this article the dynamic connectedness between the five agricultural commodities is examined by implementing the Diebold and Yılmaz (VAR based) and TimeVarying Parameter Vector Autoregressions (TVP-VAR) measures for understanding the time-varying variance-covariance mechanism using daily data for the period of 2005 to 2019. The findings reveal that at an overall level all the commodity prices are less susceptible to significant volatility shocks from other commodities specifically before the introduction of the pan-India electronic trading portal (eNAM). Cotton prices do not show any variation due to spillover from others for the entire study period. The volatility spillover is visible post eNAM period particularly for the commodity stock prices. Whereas at an overall level the total directional connectedness has gone down in the post eNAM era. The network analysis suggests that the commodity stock prices show a stronger association as compared to market prices. Generally commodity prices show volatility connectedness but with respect to their own market which means strong spillover is missing among both the markets. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Agarwal, D.K., Billore, S.D., Sharma, A.N., Dupare, B.U., & Srivastava, S.K. (2013, October). Soybean: Introduction, improvement, and utilization in India - problems and prospects. Agricultural Research, 2, 293-300. https://doi.org/10.1007/s4000301300880
  2. Ahmadi, M., Behmiri, N.B., & Manera, M. (2016, September). How is volatility in commodity markets linked to oil price shocks?. Energy Economics, 59, 11-23. https://doi.org/10.1016/j.eneco.2016.07.006
  3. Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020, April). Refined measures of dynamic connectedness based on time varying parameter vector autoregressions. Journal of Risk and Financial Management, 13, 84. https://doi.org/10.3390/jrfm13040084
  4. Awartani, B., Aktham, M., & Cherif, G. (2016, December). The connectedness between crude oil and financial markets: Evidence from implied volatility indices. Journal of Commodity Markets, 4, 56-69. https://doi.org/10.1016/j.jcomm.2016.11.002
  5. Balli, F., Naeem, M.A., Shahzad, S.J., & de Bruin, A. (2019, June). Spillover network of commodity uncertainties. Energy Economics, 81, 914-927. https://doi.org/10.1016/j.eneco.2019.06.001
  6. Bonato, M. (2015). Realized correlations, betas and volatility spillover in the commodity market: What has changed?. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2571217
  7. Bouri, E., Demirer, R., Gabauer, D., & Gupta, R. (2021, April). Financial market connectedness: The role of investors' happiness. Finance Research Letters, 102075. https://doi.org/10.1016/j.frl.2021.102075
  8. Cabrera, B.L., & Schulz, F. (2016, February). Volatility linkages between energy and agricultural commodity prices. Energy Economics, 54, 190-203. https://doi.org/10.1016/j.eneco.2015.11.018
  9. Caporin, M., Gupta, R., & Ravazzolo, F. (2021, January). Contagion between real estate and financial markets: A Bayesian quantile-on-quantile approach. The North American Journal of Economics and Finance, 55, 101347. https://doi.org/10.1016/j.najef.2020.101347
  10. Ciner, C., Lucey, B., & Yarovaya, L. (2020, March). Spillovers, integration and causality in LME nonferrous metal markets. Journal of Commodity Markets, 17, 100079. https://doi.org/10.1016/j.jcomm.2018.10.001
  11. COCPC. (2020). National cotton scenario. The Cotton Corporation of India Ltd. Retrieved from https://cotcorp.org.in/national_cotton.aspx
  12. Dahl, R.E., & Jonsson, E. (2018, December). Volatility spillover in seafood markets. Journal of Commodity Markets, 12, 44-59. https://doi.org/10.1016/j.jcomm.2017.12.005
  13. Department of Agriculture. (2021). e-NAM Overview. Retrieved October 20, 2021 from https://www.enam.gov.in/web/
  14. Didar Singh, A. (2014). India Maize Summit 2014. FICCI. Retrieved from https://ficci.in/spdocument/20386/IndiaMaize2014_v2.pdf
  15. Diebold, F., & Yilmaz, K. (2009, August). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119, 158-171.
  16. Diebold, F., & Yilmaz, K. (2011, October). On the network topology of variance decompositions: Measuring the connectedness of financial firms. (Working Paper No. 17490). Cambridge, MA: National Bureau of Economic Research. https://doi.org/10.3386/w17490
  17. Diebold, F., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28, 57-66.
  18. Diebold, F., Liu, L., & Yilmaz, K. (2017, August). Commodity connectedness. (Working Papers No. 23685). Cambridge, MA: National Bureau of Economic Research. https://doi.org/10.3386/w23685
  19. FICCI. (2018). Vision 2022. Retrieved from https://ficci.in/spdocument/22966/India-Maize-Summit.pdf
  20. Fowowe, B. (2016, June). Do oil prices drive agricultural commodity prices? Evidence from South Africa. Energy, 104, 149-157. https://doi.org/10.1016/j.energy.2016.03.101
  21. Guhathakurtha, K., Bhattacharya, S.N., & Bhattacharya, M. (2020, November). A network analysis of the Asia-Pacific and other developed stock markets: Pre and post global financial crisis. Applied Finance Letters, 9, 112-131. https://doi.org/10.24135/afl.v9i2.283
  22. Hassouneh, I., Serra, T., Bojnec, Š., & Gil, J.M. (2016, December). Modelling price trans mission and volatility spillover in the Slovenian wheat market. Applied Economics, 49, 4116-4126. https://doi.org/10.1080/00036846.2016.1276273
  23. IBEF. (2020, May). Wheat production may cross 113 million tonnes: Skymet. India Brand Equity Foundation, Ministry of Commerce & Industry, Government of India. Retrieved from https://www.ibef.org/news/wheat-production-may-cross-113million-tonnes-skymet
  24. IBEF. (2021, July). Indian agriculture and allied industries report. Indian Agriculture Industry Analysis. Retrieved from https://www.ibef.org/industry/agriculture-presentation
  25. ICAR. (2020). India maize scenario. ICAR-Indian Institute of Maize Research. Retrieved from https://iimr.icar.gov.in/india-maze-scenario/
  26. Ji, Q., Bouri, E., Roubaud, D., & Shahzad, S. J. (2018, September). Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model. Energy Economics, 75, 14-27. https://doi.org/10.1016/j.eneco.2018.08.015
  27. Koirala, K.H., Mishra, A.K., D'Antoni, J.M., & Mehlhorn, J.E. (2015, March). Energy prices and agricultural commodity prices: Testing correlation using copulas method. Energy, 81, 430-436. https://doi.org/10.1016/j.energy.2014.12.055
  28. Korobilis, D., & Yilmaz, K. (2018). Measuring dynamic connectedness with large Bayesian VAR models. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3099725
  29. Nazlioglu, S. (2011, May). World oil and agricultural commodity prices: Evidence from nonlinear causality. Energy Policy, 39, 2935-2943. https://doi.org/10.1016/j.enpol.2011.03.001
  30. Nicola, F., Pace, P.D., & Hernandez, M.A. (2016, June). Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment. Energy Economics, 57, 28-41. https://doi.org/10.1016/j.eneco.2016.04.012
  31. Reboredo, J.C. (2018, August). Green bond and financial markets: Co-movement, diversification and price spillover effects. Energy Economics, 74, 38-50. https://doi.org/10.1016/j.eneco.2018.05.030
  32. Rigobón, R. (2019). Contagion, spillover, and interdependence. Economica, 19, 69-99. https://doi.org/10.1353/eco.2019.0002
  33. Sendhil, R., Singh, R., Kumar, A., Chand, R., Pandey, J.K., Singh, R., ... Verma, R.P. (2018). Adoption level, yield and constraints in Indian barley (Hordeum vulgare) cultivation: Insights from baseline data for identifying livelihood prospects. Indian Journal of Agricultural Sciences, 88, 1233-1240.
  34. Sim, N., & Zhou, H. (2015, June). Oil prices, US stock return, and the dependence between their quantiles. Journal of Banking & Finance, 55, 1-8. https://doi.org/10.1016/j.jbankfin.2015.01.013
  35. Singh, S.K. (2016). India grain and feed annual. Retrieved from https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=GrainandFeedAnnual_NewDelhi_India_2262016.pdf
  36. Thukral, S., & Sikka, R. (2020, November). Liquidity in Asian financial markets: Crowding out or spillover effect. Applied Finance Letters, 9, 90-102. https://doi.org/10.24135/afl.v9i2.251
  37. Tricase, C., Amicarelli, V., Lamonaca, E., & Rana, R.L. (2018). Economic analysis of the barley market and related uses. In Z. Tadele (Ed.), Grasses as food and feed. IntechOpen. https://doi.org/10.5772/intechopen.78967
  38. Umar, Z., Gubareva, M., Naeem, M., & Akhter, A. (2021, February). Return and volatility transmission between oil price shocks and agricultural commodities. PLOS ONE, 16. https://doi.org/10.1371/journal.pone.0246886
  39. Wang, G.J., Xie, C., & Stanley, H.E. (2016, October). Correlation structure and evolution of world stock markets: Evidence from Pearson and partial correlation-based networks. Computational Economics, 51, 607-635. https://doi.org/10.1007/s1061401696277
  40. Wang, Y., Wu, C., & Yang, L. (2014, July). Oil price shocks and agricultural commodity prices. Energy Economics, 44, 22-35. https://doi.org/10.1016/j.eneco.2014.03.016
  41. Yan, W., & Deng, G. (2018, April). Origin of production shocks, agricultural price spikes and trade policy. The Manchester School, 87, 81-102. https://doi.org/10.1111/manc.12219
  42. Youssef, M., Mokni, K., & Ajmi, A.N. (2020, August). Dynamic connectedness between stock markets in the presence of COVID-19 pandemic: Does economic policy uncertainty matter?. https://doi.org/10.21203/rs.3.rs61157/v1
  43. Zhang, C., & Qu, X. (2015). The effect of global oil price shocks on China's agricultural commodities. Energy Economics, 51, 354-364. https://doi.org/10.1016/j.eneco.2015.07.012
Cytowane przez
Pokaż
ISSN
2392-1641
Język
eng
URI / DOI
http://dx.doi.org/10.18559/ebr.2021.4.3
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu