- Autor
- Saran Jagdish (University of Delhi, India), Pushkarna Narinder (University of Delhi, India), Sehgal Shikha (University of Delhi, India)
- Tytuł
- Relationships for Moments of the Progressively Type-II Right Censored Order Statistics from the Power Lomax Distribution and the Associated Inference
- Źródło
- Statistics in Transition, 2021, vol. 22, nr 4, s. 191-212, tab., bibliogr. 25 poz.
- Słowa kluczowe
- Statystyka, Estymacja, Prawdopodobieństwo
Statistics, Estimation, Probability - Uwagi
- summ.
Mathematics Subject Classification: 62G30; 62G05 - Abstrakt
- In this paper, we establish several recurrence relations between single and product moments of progressively Type-II right censored order statistics from the power Lomax distribution. The relations enable the computation of all the single and product moments of progressively Type-II right censored order statistics for all sample sizes ?? and all censoring schemes (R1, R2, ..., Rm) m ≤ n in a simple recursive manner. The maximum likelihood approach is used for the estimation of the parameters and the reliability characteristic. A Monte Carlo simulation study has been conducted to compare the performance of the estimates for different censoring schemes. (original abstract)
- Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach - Pełny tekst
- Pokaż
- Bibliografia
-
- Abdul-Moniem, I. B., Abdel-Hameed, H. F., (2012). On exponentiated Lomax distribution. International Journal of Mathematical Archive, 3, pp. 2144-2150.
- Afify, A. Z., Nofal, Z. M., Yousof, H. M., El Gebaly, Y. M., Butt, N. S., (2015). The Transmuted Weibull Lomax Distribution: Properties and Application. Pak. j. stat. oper. res., XI(1), pp. 135-152.
- Aggarwala, R., Balakrishnan, N., (1996). Recurrence relations for single and product moments of progressive Type-II right censored order statistics from exponential and truncated exponential distributions. Ann. Inst. Statist. Math., 48(4), pp. 757- 771.
- Aggarwala, R., Balakrishnan, N., (1998). Some properties of progressive censored order statistics from arbitrary and uniform distributions with applications to inference and simulation. Journal of Statistical planning and Inference, 70(1), pp. 35-49.
- Al-Zahrani, B., Sagor, H., (2014). The Poisson-Lomax Distribution. Revista Colombiana de Estadistica, 37(1), pp. 223-243.
- Arnold, B. C., Balakrishnan, N., Nagaraja, H. N., (1992). A First Course in Order Statistics. John Wiley, New York.
- Athar, H., Akhter, Z., Saran, J., (2014). Moments of Progressive Type-II Right Censored Order Statistics from Lindley Distribution. Statistics Research Letters, 3(1), pp. 01- 06.
- Balakrishnan, N., Aggarwala, R., (2000). Progressive Censoring - Theory, Methods, and Applications, Birkhauser, Boston.
- Balakrishnan, N., Sandhu, R.A., (1995). A simple simulation algorithm for generating progressively Type-II censored samples. American Statistician, 49(2), pp. 229-230.
- Bryson, M., (1974). Heavy-tailed distributions: properties and tests. Technometrics, 16, pp. 61-68.
- Cohen, A. C., (1963). Progressively censored samples in life testing. Technometrics, 5, pp. 327-329.
- Cohen, A. C., (1976). Progressively censored sampling in the three parameter lognormal distribution. Technometrics, 18, pp. 99-103.
- Cohen, A. C., (1991). Truncated and Censored Samples: Theory and Applications. Marcel Dekker, New York.
- Cohen, A. C., Whitten, B.J., (1988). Parameter Estimation in Reliability and Life Span Models. Marcel Dekker, New York.
- Ghitany, M. E., AL-Awadhi, F. A., Alkhalfan, L. A., (2007). Marshall-Olkin extended Lomax distribution and its applications to censored data. Communications in Statistics-Theory and Methods, 36, pp. 1855-1866.
- Lomax, K. S., (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49, pp. 847-852.
- Pushkarna, N., Saran, J., Tiwari, R., (2015). L-moments and TL-moments estimation and relationships for moments of progressive Type-II right censored order statistics from Frechet distribution. ProbStat Forum, 08, pp. 112-122.
- Rady, E. A., Hassanein, W. A., Elhaddad, T. A., (2016). The power Lomax distribution with an application to bladder cancer data. SpringerPlus, 5, pp. 18-38.
- Saran, J., Nain, K., Bhattacharya, A. P., (2018). Recurrence relations for single and product moments of progressive Type-II right censored order statistics from left truncated Logistic distribution with application to inference. International Journal of Mathematics and Statistics, 19(1), pp. 113-136.
- Saran, J., Pande, V., (2012). Recurrence relations for moments of progressive Type II right censored order statistics from Half-Logistic distribution. Journal of Statistical Theory and Applications, 11(1), pp. 87-96.
- Saran, J., Pushkarna, N., (2001). Recurrence relations for moments of progressive Type- II right censored order statistics from Burr distribution. Statistics, 35(4), pp. 495- 507.
- Saran, J., Pushkarna, N., (2014). Moments of Progressive Type-II Right Censored Order Statistics from a General Class of Doubly Truncated Continuous Distributions. Journal of Statistical Theory and Applications, 13(2), pp. 162-174.
- Tahir, M. H., Cordeiro, G. M., Mansoor, M., Zubair, M., (2015). The Weibull-Lomax distribution: properties and applications. Hacettepe Journal of Mathematics and Statistics, 44(2), pp. 461-480.
- Tahir, M. H., Hussain, M. A., Cordeiro, G. M., Hamedani, G. G., Mansoor, M., Zubair, M., (2016). The Gumbel-Lomax Distribution: Properties and Applications. Journal of Statistical Theory and Applications, 15(1), pp. 61-79.
- Thomas, D. R., Wilson, W. M., (1972). Linear order statistics estimation for the two parameter Weibull and extreme value distributions from Type II progressively censored samples. Technometrics, 14, pp. 679-691.
- Cytowane przez
- ISSN
- 1234-7655
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.21307/stattrans-2021-045






