- Autor
- Chaturvedi Aditi (Babasaheb Bhimrao Ambedkar University, Lucknow, India), Kumar Surinder (Babasaheb Bhimrao Ambedkar University, Lucknow, India)
- Tytuł
- Estimation Procedures for Reliability Functions of Kumaraswamy-G Distributions Based on Type II Censoring and the Sampling Scheme of Bartholomew
- Źródło
- Statistics in Transition, 2022, vol. 23, nr 1, s. 129-152, aneks, tab., wykr., bibliogr. 34 poz.
- Słowa kluczowe
- Symulacja Monte Carlo, Estymacja, Analiza danych, Estymatory
Monte Carlo simulation, Estimation, Data analysis, Estimators - Uwagi
- summ.
- Abstrakt
- In this paper, we consider Kumaraswamy-G distributions and derive a Uniformly Minimum Variance Unbiased Estimator (UMVUE) and a Maximum Likelihood Estimator (MLE) of the two measures of reliability, namely R(t) = P(X > t) and P = P(X > Y) under Type II censoring scheme and sampling scheme of Bartholomew (1963). We also develop interval estimates of the reliability measures. A comparative study of the different methods of point estimation has been conducted on the basis of simulation studies. An analysis of a real data set has been presented for illustration purposes. (original abstract)
- Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach - Pełny tekst
- Pokaż
- Bibliografia
- Bartholomew, D. J., (1963). The sampling distribution of an estimate arising in life testing, Technometrics, 5, pp. 361-374.
- Canavos, G., Tsokos, C. P., (1971). A Study of an Ordinary and Empirical Bayes Approach of Estimation of Reliability in the Gamma Life Testing Model. Proceedings of IEEE Symposium on Reliability, pp. 1-17.
- Chaturvedi, A., Bhatnagar, A., (2020). Development of Preliminary Test Estimators and Preliminary Test Confidence Intervals for Measures of Reliability of Kumaraswamy-G Distributions Based on Progressive Type-II Censoring. Journal of Statistical Theory and Practice, 14(3), pp. 1-28.
- Chaturvedi, A., Tomer, S. K., (2003). UMVU estimation of the reliability function of the generalized life distributions. Statistical Papers, 44(3), pp. 301-313.
- Cordeiro, G. M., De Castro, M., (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), pp. 883-898.
- Dey, S., Mazucheli, J., Anis, M. S., (2017). Estimation of reliability of multicomponent stress-strength for a Kumaraswamy distribution. Communications in Statistics - Theory and Methods, 46(4), pp. 1560-1572, DOI: 10.1080/03610926.2015.1022457.
- Dey, S., Mazucheli, J., Nadarajah, S., (2018). Kumaraswamy distribution: different methods of estimation. Computational and Applied Mathematics, 37(2), pp. 2094-2111. DOI: https://doi.org/10.1007/s40314-017-0441-1
- Eldin, M. M., Khalil, N., Amein, M., (2014). Estimation of Parameters of the Kumaraswamy Distribution Based on General Progressive Type II Censoring. American Journal of Theoretical and Applied Statistics, 3(6), pp. 217-222, DOI: 10.11648/j.ajtas. 20140306.17
- Fletcher, S.G., Ponnambalam, K., (1996). Estimation of reservoir yield and storage distribution using moments analysis. Journal of Hydrology, 182, pp. 259-275.
- Ganji, A., Ponnambalam, K., Khalili, D.,Karamouz, M., (2006). Grain yield reliability analysis with crop water demand uncertainty. Stochastic Environmental Research and Risk Assessment , 20, pp. 259-277, DOI:https://doi.org/10.1007/s00477-005-0020-7.
- Garg, M., (2009). On generalized order statistics from Kumaraswamy distribution. Tamsui Oxford Journal of Mathematical Sciences, 25(2), pp. 153-166.
- Hassan, A. S., Sabry, M. A., Elsehetry, A. M., (2020). A New Family of Upper-Truncated Distributions: Properties and Estimation. Thailand Statistician, 18(2), pp. 196-214.
- Johnson, N. L., & Kotz, S., (1970). Distributions in Statistics, vol. III: Continuous Univariate Distributions. New York: Houghton-Mifflin.
- Jones, M. C., (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6(1), pp. 70-81, DOI: https://doi. org/10.1016/j.stamet.2008.04.001.
- Kizilaslan, F., Nadar, M., (2016). Estimation and prediction of the Kumaraswamy distribution based on record values and inter-record times. Journal of Statistical Computation and Simulation, 86(12), pp. 2471-2493, DOI: 10.1080/00949655.2015.111 9832.
- Kumaraswamy, P., (1976). Sinepower probability density function. Journal of Hydrology, 31, pp. 181-184.
- Kumaraswamy, P., (1978). Extended sinepower probability density function. Journal of Hydrology, 37, pp. 81-89.
- Kumaraswamy, P., (1980). A generalized probability density function for double-bounded random process. Journal of Hydrology, 46, pp. 79-88.
- Kundu, A., Chowdhury, S., (2018). Ordering properties of sample minimum from Kumaraswamy- G random variables. Statistics, 52(1), pp. 133-146, DOI: 10.1080/02 331888.2017.1353516.
- Kumari T., Chaturvedi, A., Pathak, A., (2019). Estimation and Testing Procedures for the Reliability Functions of Kumaraswamy-G Distributions and a Characterization Based on Records. Journal of Statistical Theory and Practice, 13(1), DOI:10.1007/s42519- 018-0014-7.
- Mameli, V., Musio, M., (2013). A Generalization of the Skew-Normal Distribution: The Beta Skew-Normal. Communications in Statistics - Theory and Methods, 42(12), pp. 2229-2244, DOI: 10.1080/03610926.2011.607530.
- Mameli, V., (2015). The Kumaraswamy skew-normal distribution. Statistics & Probability Letters, 104, pp. 75-81.
- Nadar, M., Kizilaslan, F., Papadopoulos, A., (2014). Classical and Bayesian estimation of P(Y < X) for Kumaraswamy's distribution. Journal of Statistical Computation and Simulation, 84:7, pp. 1505-1529, DOI: 10.1080/00949655.2012.750658.
- Nadarajah, S., (2008). On the distribution of Kumaraswamy. Journal of Hydrology, 348(3- 4), pp. 568-569, DOI: 10.1016/j.jhydrol.2007.09.008.
- Nadarajah, S., Cordeiro, G. M., Ortega, E. M. M., (2012). General results for the Kumaraswamy- G distribution. Journal of Statistical Computation and Simulation, 82(7), pp. 951-979, DOI: 10.1080/00949655.2011.562504.
- Patel, J. K., Kapadia, C. H., Owen D. B., (1976). Handbook of Statistical Distributions. Marcel Dekker, New York.
- Ponnambalam, K., Seifi, A., Vlach, J., (2001). Probabilistic design of systems with general distributions of parameters. International Journal of Circuit Theory and Applications, 29, pp. 527-536, DOI: https://doi.org/10.1002/cta.173.
- Proschan, F., (1963). Theoretical explanation of observed decreasing failure rate. Technometrics, 15, pp. 375-383.
- Rohatgi, V. K., Saleh, A. K. Md. E., (2012). An introduction to probability and statistics. Wiley, New York.
- Seifi, A., Ponnambalam, K., Vlach, J., (2000). Maximization of Manufacturing Yield of Systems with Arbitrary Distributions of Component Values. Annals of Operations Research ,99, pp. 373-383, DOI: 10.1023/A:1019288220413.
- Shrivastava, A., Chaturvedi, A., Bhatti, M. I., (2019). Robust Bayesian analysis of a multivariate dynamic model. Physica A: Statistical Mechanics and its Applications, 528, 121451.
- Sindhu, T.N., Feroze, N., Aslam, M., (2013).Bayesian Analysis of the Kumaraswamy Distribution under Failure Censoring Sampling Scheme. International Journal of Advanced Science and Technology, 51, pp. 39-58.
- Sundar, V., Subbiah, K., (1989). Application of double bounded probability density function for analysis of ocean waves. Ocean Engineering, 16(2), pp. 193-200.
- Tamandi, M., Nadarajah, S., (2016). On the Estimation of Parameters of Kumaraswamy- G Distributions. Communications in Statistics - Simulation and Computation, 45(10), pp. 3811-3821, DOI: 10.1080/03610918.2014.957840.
- Cytowane przez
- ISSN
- 1234-7655
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.21307/stattrans-2022-008