BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Beghriche Abdelfateh (University the Brothers Mentouri Constantine, Algeria), Zeghdoudi Halim (Badji-Mokhtar University, Algeria), Raman Vinoth (Imam Abdulrahman Bin Faisal University, Kingdom of Saudi Arabia), Chouia Sarra (Badji-Mokhtar University, Algeria)
Tytuł
New Polynomial Exponential Distribution: Properties and Applications
Źródło
Statistics in Transition, 2022, vol. 23, nr 3, s. 95-112, tab., wykr., bibliogr. 17 poz.
Słowa kluczowe
Metoda największej wiarygodności, Estymacja, Funkcje
Maximum likelihood estimation, Estimation, Functions
Uwagi
summ.
Abstrakt
The study describes the general concept of the XLindley distribution. Forms of density and hazard rate functions are investigated. Moreover, precise formulations for several numerical properties of distributions are derived. Extreme order statistics are established using stochastic ordering, the moment method, the maximum likelihood estimation, entropies and the limiting distribution. We demonstrate the new family's adaptability by applying it to a variety of real-world datasets. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Akaike, H., (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, AC-19, pp. 716-723.
  2. Asgharzadeh, A., Hassan, S. and Bakouch, L. E., (2013). Pareto Poisson-Lindley distribution and its application. Journal of Applied Statistics, Vol. 40, No. 8, pp. 1-18.
  3. Bashir, S., Rasul, M., (2015). Some properties of the weighted Lindley distribution. International Journal of Economic and Business Review, 3 (8), pp. 11-17.
  4. Beghriche, A. F., Zeghdoudi, H., (2019). A Size Biased Gamma Lindley Distribution. Thailand Statistician, Vol.17, No 2, pp. 179-189.
  5. Fisher, R. A., (1934). The effects of methods of ascertainment upon the estimation of frequencies. Ann. Eugenics, , 6, pp. 13-25.
  6. Ghitany, M. E, Atieh, B and Nadarajah, S., (2008b). Lindley distribution and its applications. Mathematics and Computers in Simulation, 78, pp. 493-506.
  7. Glaser, R. E., (1980). Bathtub and related failure rate characterizations. J. Amer.Statist. Assoc., 75, pp. 667-672.
  8. Gupta R. D., Kundu D., (1999). Generalized Exponential distribution. Australian and New Zealand Journal of Statistics, Vol. 41, No. 2, pp.173-188.
  9. Laurens de Haan, Ferreira A., (2006). Extreme value theory: An introduction. Springer.
  10. Lawless, J. F., (2003). Statistical models and methods for lifetime data. Wiley, New Y [16] Sen, Subhradev; Maiti, Sudhansu S.; and Chandra, N., (2016). The Xgamma Distribution: Statistical Properties and Application. Journal of Modern Applied Statistical Methods, Vol. 15, Iss. 1, Article 38.
  11. Lindley, D. V., (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Society, series B, 20, pp. 102-107.
  12. Patil, G. P., Rao, C. R., (1977). Weighted distribution survey of their applications, In P. R. Krishnaiah, (E ds.), Applications of statistics, pp. 383-405, Amsterdam, North Holland.
  13. Patil, G. P., Rao, C. R., (1978). Weighted distributions and size biased sampling with applications to wild life populations and human families. Biometrics, 34, pp. 179-189.
  14. Sen Subhradev, Maiti Sudhansu S. and Chandra, N., (2016). The xgamma Distribution: Statistical Properties and Application. Journal of Modern Applied Statistical Methods, Vol. 15, Iss. 1, Article 38. DOI: 10.22237/jmasm/1462077420.
  15. Zeghdoudi, H., Bouchahed, L., (2018). A new and unified approach in generalizing the Lindley's distribution with applications. Statistics in Transition new series, Vol. 19, No. 1, pp. 61-74,
  16. Zeghdoudi, H., Messadia, M., (2018). Zeghdoudi Distribution and its Applications. International Journal of Computing Science and Mathematics, Vol. 9, No.1, pp. 58-65.
  17. Zeghdoudi, H.,. Nedjar, S., (2016c). A pseudo Lindley distribution and its application. Afr. Stat., Vol. 11, No. 1, pp. 923-932.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
URI / DOI
http://dx.doi.org/10.2478/stattrans-2022-0032
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu