BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Aijaz Ahmad (Bhagwant University, Ajmer, Rajasthan, India), ul Ain S. Qurat (Bhagwant University, Ajmer, Rajasthan, India), Afaq Ahmad (Department of Mathematical Sciences, Islamic University of Science & Technology, Awantipora, Pulwama, India), Tripathi Rajnee (Bhagwant University, Ajmer, Rajasthan, India)
Tytuł
Poisson Area-Biased Ailamujia Distribution and Its Applications in Environmental and Medical Sciences
Źródło
Statistics in Transition, 2022, vol. 23, nr 3, s. 167-184, tab., wykr., bibliogr. 17 poz.
Słowa kluczowe
Rozkład Poissona, Metoda największej wiarygodności, Analiza statystyczna
Poisson distribution, Maximum likelihood estimation, Statistical analysis
Uwagi
summ.
Mathematics Subject Classification: 60E05, 62E15.
Abstrakt
In this paper, a new Poisson area-biased Ailamujia distribution has been formulated to analyse count data. It was created by combining two distributions: the Poisson and areabiased Ailamujia distributions, using the compounding technique. Several distributional properties of the formulated distribution were studied. Its ageing characteristics were determined and expressed explicitly. A variety of diagrams were used to demonstrate the characteristics of the probability mass function (pmf) and the cumulative distribution function (cdf). The parameter of the developed model was estimated by employing the maximum likelihood estimation approach. Finally, two data sets were used to demonstrate the effectiveness of the investigated distribution. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Fisher, R., (1934). The effect of methods of ascertainment, Annals Eugenics, 6, pp. 13-25.
  2. Rao, C. R., (1965). On Discrete Distributions Arising Out of Methods of Ascertainment. Sankhya; the Ind. J. Statist, series A, 27(2/4), pp. 311-324.
  3. Gerstenkorn, T., (1993). A compound of the generalized gamma distribution with the exponential one. Recherches surles deformations,16(1), pp. 5-10.
  4. Gerstenkorn, T., (1996). A compound of the Polya distribution with beta distribution. Random oper. And Stoch. Equ., 4(2), pp. 103-110.
  5. Giovani, C. R., Francisco, L., and Pedro, L. R., (2016). Poisson-Exponential distribution different methods of estimation. Journal of applied statistics, 15(45), pp. 128-144.
  6. Gupta, R. C., Ong, S. H., (2004). A new generalization of negative binomial distribution. Journal of computational statistics and data analysis, 45, pp. 287-300.
  7. Greenwood, M., Yule, G. U., (1920). An inquiry into the nature of frequency distribution representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents, J. Roy. Stat. Soc., 83, pp. 225-279.
  8. Judcy, C., (1942). Data on the macroscopic fresh-water fauna in dredge samples from the bottom of Weber Lake.
  9. Mahmoudi, E., Zakerzadeh H., (2010). Generalized Poisson-Lindley distribution. Communications in statistics - theory and methods, 39(10), pp. 1785-1798.
  10. Puig, P., Valero J., (2006). Count Data Distributions, Some Characterizations With Applications. Journal of the American Statistical Association, 101, pp. 332-340.
  11. Shanker, R., (2017). The discrete Poisson-Akash distribution. International journal of probability and statistics, 6(1), pp. 1-10.
  12. Sankaran, M., (2010). The discrete Poisson-Lindley distribution. Biometrics, 26, pp. 145-149.
  13. Subhradev, S., (2018). Quasi-Xgamma distribution. Istatistik: journal of the Turkish statistical association, 11(3), pp. 65-76.
  14. Shanker, R., Shukla, K.K., (2019). A generalization of Poisson-Sujatha distribution and its application to ecology. International journal of biomathematics, 12(2), pp. 66-83.
  15. Thomas, M., (1949). A generalization of Poisson's binomial limit for use in ecology. Biometrika, 36(2), pp. 18-25.
  16. Wanbo, L., Shi, D., (2012). A new compounding life distribution: the Weibull-Poisson distribution. Journal of applied statistics, 39(1), pp. 21-38.
  17. Zamani, H., Ismail, N., (2010). Negative binomial-Lindley distribution and its application. Journal of mathematics and statistics, 1, pp. 4-9.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
URI / DOI
http://dx.doi.org/10.2478/stattrans-2022-036
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu