BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Hawrysz Liliana (Wrocław University of Science and Technology), Gierszewska Grażyna (Warsaw University of Technology, Poland), Walczak Renata (Warsaw University of Technology, Poland), Kludacz-Alessandri Magdalena (Warsaw University of Technology, Poland)
Tytuł
The Impact of Self-efficacy and Social Impact on the Acceptance of Teleconsultations by General Practitioners During the Covid-19 Pandemic in Poland
Źródło
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska, 2022, z. 163, s. 101-122, bibliogr. 72 poz.
Słowa kluczowe
Telemedycyna, Opieka zdrowotna, Poczucie własnej skuteczności
Telemedicine, Health care, Self-efficacy
Uwagi
summ.
Abstrakt
Purpose: During the Covid-19 pandemic, Polish Primary healthcare centres (PHCs) switched to remote medical care provided in the form of teleconsultation to ensure the safety of their patients. The present study was conducted to better understand the factors influencing the general practitioners' (GPs) acceptance of the telemedicine system in Poland. We used the behavioural intentions of GPs to use the teleconsultation system, which is the main factor from the technology acceptance model (TAM) and analysed the impact of the social impact and self-efficacy on this factor. Design/methodology/approach: The analysis used survey data from 361 GPs across Poland in 2021, which were analysed using structural equation modelling. Findings: The results indicate that Polish GPs reported a positive perception and high acceptance of the telemedicine system during the Covid-19 pandemic. The social impact and self-efficacy are determinants of the behavioural intention to use the teleconsultation system by GPs in Poland. Originality/value: The study contributes to empirical knowledge by identifying the vital predictive factors affecting the behavioural intention to use the teleconsultation system by GPs.
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Adams, D.A., Nelson, R.R., Todd, P.A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly: Management Information Systems, 16(2), 227-247. https://doi.org/10.2307/249577.
  2. Adenuga, K.I., Iahad, N.A., Miskon, S. (2017). Towards reinforcing telemedicine adoption amongst clinicians in Nigeria. International Journal of Medical Informatics, 104(May), 84-96. https://doi.org/10.1016/j.ijmedinf.2017.05.008.
  3. Agarwal, R., Sambamurthy, V., Stair, R.M. (2000). Research Report: The Evolving Relationship Between General and Specific Computer Self-Efficacy-An Empirical Assessment. Information System Research, 11(4), 418-430. https://doi.org/10.1287/ ISRE.11.4.418.11876.
  4. Ahlan, A., Ahmad, B. (2015). An overview of patient acceptance of Health Information Technology in developing countries: a review and conceptual model. International Journal of Information Systems and Project Management, 3(1). Retrieved from https://aisel.aisnet.org/ijispm/vol3/iss1/3.
  5. Ajzen, I., Fishbein, M. (2011). Attitudes and the Attitude-Behavior Relation: Reasoned and Automatic Processes. European Review of Social Psychology, 11(1), 1-33. https://doi.org/10.1080/14792779943000116.
  6. Alexandra, S., Handayani, P.W., Azzahro, F. (2021). Indonesian hospital telemedicine acceptance model: the influence of user behavior and technological dimensions. Heliyon, 7(12), e08599. https://doi.org/10.1016/J.HELIYON.2021.E08599.
  7. Alqudah, A.A., Al-Emran, M., Shaalan, K. (2021). Technology Acceptance in Healthcare: A Systematic Review. Applied Sciences 2021, Vol. 11, Page 10537, 11(22), 10537. https://doi.org/10.3390/APP112210537.
  8. Amoako-Gyampah, K., Salam, A. F. (2004). An extension of the technology acceptance model in an ERP implementation environment. Information & Management, 41(6), 731-745. https://doi.org/10.1016/J.IM.2003.08.010.
  9. Anderson, J.C., Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, 103(3), 411-423. https://doi.org/10.1037/0033-2909.103.3.411.
  10. Bandura, A. (2002). Social foundations of thought and action. In D. Marks (Ed.), The Health Psychology Reader. SAGE. Retrieved from https://books.google.pl/books?hl=pl&lr= &id=PdY9o3l5vpYC&oi=fnd&pg=PA94&ots=uGgUxYYo7M&sig=RIZkxaXWpr3WbZesMI-Bcf0eJ68&redir_esc=y#v=onepage&q&f=false.
  11. Baptista, G., Oliveira, T. (2015). Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50, 418-430. https://doi.org/10.1016/J.CHB.2015.04.024.
  12. Baudier, P., Kondrateva, G., Ammi, C., Chang, V., Schiavone, F. (2021). Patients' perceptions of teleconsultation during COVID-19: A cross-national study. Technological Forecasting and Social Change, 163, 120510. https://doi.org/10.1016/ J.TECHFORE.2020.120510.
  13. Carter, L., Bélanger, F. (2005). The utilisation of e-government services: citizen trust, innovation and acceptance factors*. Information Systems Journal, 15(1), 5-25. https://doi.org/10.1111/J.1365-2575.2005.00183.X.
  14. Chau, P.Y.K., Hu, P.J.H. (2002). Investigating healthcare professionals' decisions to accept telemedicine technology: an empirical test of competing theories. Information & Management, 39(4), 297-311. https://doi.org/10.1016/S0378-7206(01)00098-2.
  15. Compeau, D.R., Higgins, C.A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly: Management Information Systems, 19(2), 189-210. https://doi.org/10.2307/249688.
  16. Davis, F.D. (1989). Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/https://doi.org/10.2307/ 249008.
  17. Davis, F.D., Bagozzi, R.P., Warshaw, P.R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982- 1003. https://doi.org/10.1287/mnsc.35.8.982.
  18. Davis, F.D., Bagozzi, R.P., arshaw, P.R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. Journal of Applied Social Psychology, 22(14), 1111--1132. https://doi.org/10.1111/J.1559-1816.1992.TB00945.X.
  19. DeLone, W.H., McLean, E.R. (2014). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748.
  20. Deng, Q., Zheng, Y., Lu, J., Zeng, Z., Liu, W. (2021). What factors predict physicians' utilisation behavior of contrast-enhanced ultrasound? Evidence from the integration of the Theory of Planned Behavior and Technology Acceptance Model using a structural equation modeling approach. BMC Medical Informatics and Decision Making, 21(1). https://doi.org/10.1186/s12911-021-01540-8.
  21. Deng, Z., Hong, Z., Ren, C., Zhang, W., Xiang, F. (2018). What Predicts Patients' Adoption Intention Toward mHealth Services in China: Empirical Study. JMIR Mhealth Uhealth, 6(8), e9316. https://doi.org/10.2196/MHEALTH.9316.
  22. Esmaeilzadeh, P., Sambasivan, M., Kumar, N. (2010). The challenges and issues regarding e-health and health information technology trends in the healthcare sector. Communications in Computer and Information Science, 113 CCIS, 23-37. https://doi.org/10.1007/978-3-642-16397-5_2/COVER.
  23. Felício, J.A., Couto, E., Caiado, J. (2012). Human capital and social capital in entrepreneurs and managers of small and medium enterprises. Vilnius Gediminas Technical University, 13(3), 395-420. https://doi.org/10.3846/16111699.2011.620139.
  24. Fishbein, M., Ajzen, I. (1975). Principles of Change. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research.
  25. Gagnon, M.P., Desmartis, M., Labrecque, M., Car, J., Pagliari, C., Pluye, P., ... Légaré, F. (2010). Systematic Review of Factors Influencing the Adoption of Information and Communication Technologies by Healthcare Professionals. Journal of Medical Systems 2010 36:1, 36(1), 241-277. https://doi.org/10.1007/S10916-010-9473-4.
  26. Gagnon, M.P., Godin, G., Gagné, C., Fortin, J.P., Lamothe, L., Reinharz, D., Cloutier, A. (2003). An adaptation of the theory of interpersonal behaviour to the study of telemedicine adoption by physicians. International Journal of Medical Informatics, 71(2-3), 103-115. https://doi.org/10.1016/S1386-5056(03)00094-7.
  27. Garavand, A., Aslani, N., Nadri, H., Abedini, S., Dehghan, S. (2022). Acceptance of telemedicine technology among physicians: A systematic review. Informatics in Medicine Unlocked, 30, 100943. https://doi.org/10.1016/J.IMU.2022.100943.
  28. Garavand, A., Samadbeik, M., Nadri, H., Rahimi, B., Asadi, H. (2019). Effective Factors in Adoption of Mobile Health Applications between Medical Sciences Students Using the UTAUT Model. Methods of Information in Medicine, 58(4-5), 131-139. https://doi.org/10.1055/S-0040-1701607/ID/OR19010040-18.
  29. Guo, S., Guo, X., Fang, Y., Vogel, D. (2017). How Doctors Gain Social and Economic Returns in Online Health-Care Communities: A Professional Capital Perspective. Journal of Management Information Systems, 34(2), 487-519. https://doi.org/10.1080/ 07421222.2017.1334480/SUPPL_FILE/MMIS_A_1334480_SM1552.DOCX.
  30. Guo, S., Guo, X., Zhang, X., Vogel, D. (2017). Doctor-patient relationship strength's impact in an online healthcare community. Information Technology for Development, 24(2), 279-300. https://doi.org/10.1080/02681102.2017.1283287.
  31. Hair, J.F. Jr, Black, W.C., Babin, B.J., Anderson, R.E., Black, W.C., Anderson, R.E. (2018). Multivariate Data Analysis. Cengage. https://doi.org/10.1002/9781119409137.ch4.
  32. Hair, J.F. Jr, Black, W.C., Babin, B.J., Anderson, R.E. (2013). Multivariate Data Analysis. Pearson Education, Limited.
  33. Handayani, P.W., Meigasari, D.A., Pinem, A.A., Hidayanto, A.N., Ayuningtyas, D. (2018). Critical success factors for mobile health implementation in Indonesia. Heliyon, 4(11), e00981. https://doi.org/10.1016/J.HELIYON.2018.E00981.
  34. Hendy, J., Barlow, J. (2012). The adoption of telecare in the community: recent technological advances in information technology equipment and data processing, combined with the increasing number of people with chronic, long-term conditions, have led to new levels of "remote care." Community Practitioner, 85(3), 41-44. Retrieved from https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=14622815&v=2.1&it=r&id=GALE%7CA326505902&sid=googleScholar&linkaccess=fulltext.
  35. Hill, R.J., Fishbein, M., Ajzen, I. (1977). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Contemporary Sociology, 6(2), 244. https://doi.org/10.2307/2065853.
  36. Holden, R.J., Karsh, B.T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. https://doi.org/10.1016/ j.jbi.2009.07.002.
  37. Horn, J.L. (1965). Factors in Factor Analysis. Psychometrika, 30(2), 179-185.
  38. Hsu, M.K., Wang, S.W., Chiu, K.K. (2009). Computer attitude, statistics anxiety and self-efficacy on statistical software adoption behavior: An empirical study of online MBA learners. Computers in Human Behavior, 25(2), 412-420. https://doi.org/10.1016/ J.CHB.2008.10.003.
  39. Hung, S.Y., Ku, Y.C., Chien, J.C. (2012). Understanding physicians' acceptance of the Medline system for practicing evidence-based medicine: A decomposed TPB model. International Journal of Medical Informatics, 81(2), 130-142. https://doi.org/10.1016/ J.IJMEDINF.2011.09.009.
  40. Jackson, C.M., Chow, S., Leitch, R.A. (1997). Toward an Understanding of the Behavioral Intention to Use an Information System. Decision Sciences, 28(2), 357-389. https://doi.org/10.1111/J.1540-5915.1997.TB01315.X.
  41. Jin, Z., hen, Y. (2015). Telemedicine in the cloud era: Prospects and challenges. IEEE Pervasive Computing, 14(1), 54-61. https://doi.org/10.1109/MPRV.2015.19.
  42. Johnston, B., Kidd, L., Wengstrom, Y., Kearney, N. (2012). An evaluation of the use of Telehealth within palliative care settings across Scotland. Palliative Medicine, 26(2), 152-161. https://doi.org/10.1177/0269216311398698.
  43. Kamal, S.A., Shafiq, M., Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society, 60, 101212. https://doi.org/10.1016/J.TECHSOC.2019.101212.
  44. Kassim, E.S., Jailani, S.F.A.K., Hairuddin, H., Zamzuri, N.H. (2012). Information System Acceptance and User Satisfaction: The Mediating Role of Trust. Procedia - Social and Behavioral Sciences, 57, 412-418. https://doi.org/10.1016/j.sbspro.2012.09.1205.
  45. Lai, P.C. (2017). The literature review of technology adoption models and theories for the novelty technology. Journal of Information Systems and Technology Management, 14(1), 21-38. https://doi.org/10.4301/S1807-17752017000100002.
  46. Lancelot Miltgen, C., Popovič, A., Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the "big 3" of technology acceptance with privacy context. Decision Support Systems, 56(1), 103-114. https://doi.org/10.1016/j.dss.2013.05.010.
  47. Lestari, T., Rofianto, W. (2020). Multi-Dimensional Consumer Value and Adoption of Mobile Health Service: A Study During COVID-19 Outbreak in Indonesia. In BIEC 2020. Retrieved from http://repository.ibs.ac.id/1102/1/B3b_Kinerja BIEC Lestari %26 Rofianto.pdf.
  48. Lin, Z. (2017). The Overall Perception of Telemedicine and Intention to Use Telemedicine Services: A comparison between frequent travelers and non frequent travelers. Cornell University Graduate School. https://doi.org/10.7298/X4FT8J6X.
  49. Lu, J., Yao, J.E., Yu, C.S. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. Journal of Strategic Information Systems, 14(3), 245-268. https://doi.org/10.1016/j.jsis.2005.07.003.
  50. Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Information Systems Research, 2(3), 173-191. https://doi.org/10.1287/ISRE.2.3.173.
  51. Mullett, C.J., Evans, R.S., Christenson, J.C., Dean, J.M. (2001). Development and Impact of a Computerised Pediatric Antiinfective Decision Support Program. Pediatrics, 108(4), e75-e75. https://doi.org/10.1542/PEDS.108.4.E75.
  52. Ong, C.S., Lai, J.Y., Wang, Y.S. (2004). Factors affecting engineers' acceptance of asynchronous e-learning systems in high-tech companies. Information and Management, 41(6), 795-804. https://doi.org/10.1016/j.im.2003.08.012.
  53. Picot, J. (2009). Telemedicine and Telehealth in Canada: Forty Years of Change in the Use of Information and Communications Technologies in a Publicly Administered Health Care System*. Telemedicine Journal, 4(3), 199-205. https://doi.org/10.1089/TMJ.1.1998.4.199.
  54. Rahimpour, M., Lovell, N.H., Celler, B.G., McCormick, J. (2008). Patients' perceptions of a home telecare system. International Journal of Medical Informatics, 77(7), 486-498. https://doi.org/10.1016/J.IJMEDINF.2007.10.006.
  55. Rho, M.J., Choi, I. Young, Lee, J. (2014). Predictive factors of telemedicine service acceptance and behavioral intention of physicians. International Journal of Medical Informatics, 83(8), 559-571. https://doi.org/10.1016/J.IJMEDINF.2014.05.005.
  56. Sharifi, M., Ayat, M., Jahanbakhsh, M., Tavakoli, N., Mokhtari, H., Wan Ismail, W.K. (2013). E-health implementation challenges in Iranian medical centers: A qualitative study in Iran. Telemedicine and E-Health, 19(2), 122-128. https://doi.org/10.1089/ TMJ.2012.0071.
  57. Shih, Y.Y. (2007). The effect of computer self-efficacy on enterprise resource planning usage. http://Dx.Doi.Org/10.1080/01449290500168103, 25(5), 407-411. https://doi.org/ 10.1080/01449290500168103.
  58. Shu, Q., Tu, Q., Wang, K. (2011). The Impact of Computer Self-Efficacy and Technology Dependence on Computer-Related Technostress: A Social Cognitive Theory Perspective. International Journal of Human-Computer Interaction, 27(10), 923-939. https://doi.org/10.1080/10447318.2011.555313.
  59. Tabachnick, B., Fidell, L. (2018). Using Multivariate Statistics. Upper Saddle River, UNITED STATES: Pearson Education. Retrieved from http://ebookcentral.proquest.com/ lib/northumbria/detail.action?docID=5581921.
  60. Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960-967. https://doi.org/10.1016/ J.PROMFG.2018.03.137.
  61. Taylor, S., Todd, P.A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Researcg, 6(2), 144-176. https://doi.org/10.1287/ ISRE.6.2.144.
  62. Thong, J.Y.L., Hong, W., Tam, K.Y. (2002). Understanding user acceptance of digital libraries: what are the roles of interface characteristics, organisational context, and individual differences? International Journal of Human-Computer Studies, 57(3), 215-242. https://doi.org/10.1016/S1071-5819(02)91024-4.
  63. Tsai, C.H. (2014). Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems. International Journal of Environmental Research and Public Health 2014, Vol. 11, pp. 4905-4925, 11(5), 4905-4925. https://doi.org/10.3390/IJERPH110504905.
  64. Venkatesh, Viaswanath, Davis, Fred, D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. Retrieved from https://www.jstor.org/stable/pdf/2634758.pdf.
  65. Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/ISRE.11.4.342.11872.
  66. Venkatesh, V., Davis, F.D. (1996). A Model of the Antecedents of Perceived Ease of Use: Development and Test*. Decision Sciences, 27(3), 451-481. https://doi.org/10.1111/J.1540-5915.1996.TB00860.X.
  67. WHO (2020). Telemedicine: opportunities and developments in member states. Report on the second global survey on eHealth (World Health Organization, Ed.). Retrieved from https://www.cabdirect.org/cabdirect/abstract/20133159246.
  68. Williams, B., Onsman, A., Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Journal of Emergency Primary Health Care, 8(3), 1-13. https://doi.org/10.33151/ajp.8.3.93.
  69. Williams, M.D., Slade, E.L., Dwivedi, Y.K. (2015). Consumers' Intentions to Use E-Readers. Journal of Computer Information Systems, 54(2), 66-76. https://doi.org/10.1080/08874417.2014.11645687.
  70. Wu, J.H., Chen, Y.C., Lin, L.M. (2007). Empirical evaluation of the revised end user computing acceptance model. Computers in Human Behavior, 23(1), 162-174. https://doi.org/10.1016/J.CHB.2004.04.003.
  71. Yu, P., Li, H., Gagnon, M.P. (2009). Health IT acceptance factors in long-term care facilities: A cross-sectional survey. International Journal of Medical Informatics, 78(4), 219-229. https://doi.org/10.1016/J.IJMEDINF.2008.07.006.
  72. Zhang, X., Xiang, S. (2019). Learn About Reliability Analysis and Factor Analysis in SPSS With Online Shopping Data (2006). Learn About Reliability Analysis and Factor Analysis in SPSS With Online Shopping Data (2006) (2006). https://doi.org/10.4135/ 9781526468321.
Cytowane przez
Pokaż
ISSN
1641-3466
Język
eng
URI / DOI
http://dx.doi.org/10.29119/1641-3466.2022.163.6
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu