BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Vinh Ngo Quang (Korea Maritime and Ocean University, Busan, Republic of Korea), You Sam-Sang (Korea Maritime and Ocean University, Republic of Korea), Long Le Ngoc Bao (Korea Maritime and Ocean University, Republic of Korea), Kim Hwan-Seong (Korea Maritime and Ocean University, Busan, Republic of Korea)
Optimal decision making for empty container management at seaport yard
LogForum, 2023, vol. 19, nr 1, s. 75-89, rys., tab., wykr., bibliogr. 19 poz.
Słowa kluczowe
Konteneryzacja, Analiza stochastyczna, Kontrola, Programowanie matematyczne
Containerization, Stochastic analysis, Control, Mathematical programming
Background: In global trade, shipping companies are forced to manage empty containers due to imbalances in international trade activities. For decision-makers, the problems require considering restrictions and an uncertain environment and repositioning or leasing the containers to satisfy the rapidly changing global demands regardless of the epidemic outbreak's impact on the seaport. The proposed approach can help decision-makers manage the empty container in port yards more effectively under market uncertainty by employing the Bellman optimality principle for the stochastic dynamic system. Methods: A stochastic production planning model is employed to cope with uncertainty and unexpected events to ensure a robust management strategy. Ito's formula describes the dynamic model for solving a stochastic differential equation. This paper uses stochastic optimal control theory to deal with efficient empty container management at the port yard. The findings have revealed the effectiveness of the proposed framework, which will provide a decision-making support scheme for efficient port operations. Results: The presented algorithm is realized by a novel approach, employing the Hamilton-Jacobi-Bellman (HJB) equation for optimal stochastic control problems. When comparing the model with and without uncertainty events, the gap is just about 0.04 %, proving the robustness of the proposed model. The results provide a decision support system for port managers when managing the empty container in the seaport yard. Conclusions: The proposed model not only figures out the optimal ordering of empty containers for each cycle but also points out the optimal safety stock level. Using a stochastic optimization approach, decision-makers can implement a strategic management policy to optimize seaport operational costs under market disruptions.(original abstract)
Pełny tekst
  1. Abdelshafie A., Salah M., Kramberger T., & Dragan D., 2022. Repositioning and Optimal Re-Allocation of Empty Containers: A Review of Methods, Models, and Applications, Sustainability, 14(11).
  2. Belayachi N., Gelareh S., Yachba K., & Bouamrane K., 2017. The Logistic of Empty Containers' Return in the Liner-Shipping Network, Transport and Telecommunication Journal, 18, 207 - 219.
  3. Boilé M., 2006. Empty Intermodal Container Management. Available on the Internet:
  4. Di Francesco M., Crainic T. G., & Zuddas P., 2009. The effect of multi-scenario policies on empty container repositioning, Transportation Research Part E: Logistics and Transportation Review (45), 758-770.
  5. Douaioui K., Fri M., Mabrouki C., & Semma E.A., 2021. A multi-objective integrated procurement, production, and distribution problem of supply chain network under fuzziness uncertainties, Pomorstvo, 35(2).
  6. Furió S., Andrés C., Adenso-Díaz B., & Lozano S., 2013. Optimization of empty container movements using street-turn: Application to Valencia hinterland, Computers & Industrial Engineering, 66, 909-917.
  7. Hoffmann N., Stahlbock R., & Voß S., 2020. A decision model on the repair and maintenance of shipping containers, Journal of Shipping and Trade, 5.
  8. Hosseini A., & Sahlin T., 2018. An optimization model for management of empty containers in distribution network of a logistics company under uncertainty, Journal of Industrial Engineering International, 1-18.
  9. Hu H., Du B., & Bernardo M., 2020. Leasing or repositioning empty containers? Determining the time-varying guide leasing prices for decision making, Maritime Policy & Management, 48, 829 - 845.
  10. Jula H., Chassiakos A., & Ioannou P.A., 2006. Port dynamic empty container reuse, Transportation Research Part E-logistics and Transportation Review, 42, 43-60.
  11. Li S., Zhang J., & Tang W., 2015. Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products, International Journal of Production Research, 53, 2937 - 2950.
  12. Mittal N., Boilé M., Baveja A., & Theofanis S., 2013. Determining optimal inland-empty-container depot locations under stochastic demand, Research in Transportation Economics, 42, 50-60.
  13. Rodrigue J., Comtois C., & Slack B., 2006. The Geography of Transport Systems (3rd edition). Available on the Internet:
  14. Sethi S.P., 2021. Optimal Control Theory: Applications to Management Science and Economics, Fourth edition, Springer Texts in Business and Economics.
  15. Shintani K., Imai A., Nishimura E., & Papadimitriou S., 2007. The container shipping network design problem with empty container repositioning, Transportation Research Part E-logistics and Transportation Review, 43, 39-59.
  16. Theofanis S., & Boilé M., 2008. Empty marine container logistics: facts, issues and management strategies, GeoJournal, 74, 51-65.
  17. UNCTAD, 2021. Review of Maritime Transport 2021. Available on the Internet:
  18. Yun W.Y., Lee Y.M., & Choi Y., 2011. Optimal inventory control of empty containers in inland transportation system, International Journal of Production Economics, 133, 451- 457.
  19. Zhang H., Lu L., & Wang X., 2019. Tactical and Operational Cooperative Empty Container Repositioning Optimization Model Based on Business Flow and Initial Solutions Generation Rules, Symmetry, 11, 300.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu