BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Targiel Krzysztof S. (University of Economics in Katowice)
The Impact of the Covid-19 Pandemic on the Level of Sentiment in It Projects Implemented in the Open Source Formula
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska, 2022, z. 163, s. 597-608, bibliogr. 31 poz.
Słowa kluczowe
Zarządzanie projektem, Analiza wydźwięku, Języki naturalne
Project management, Sentiment analysis, Natural languages
Purpose: The aim of this paper is to analyze possibilities of using sentiment analysis in project management. Design/methodology/approach: The objectives were achieved by analyzing the sentiment on the mailing lists of the open-source project run by the Apache Software Foundation. The main method used for the research was calculation of sentiment and a comparison of its course with the events taking place in the surroundings of the project. Findings: We have found that the attitude of users, as the main stakeholders, changes with the change of external factors (caused by the COVID-19 pandemic). At the same time, using lexical methods, it is not possible to determine the cause, but only the fact that such a change has occurred. Research limitations/implications: The main limitation in research was using only one project. It must be checked on other similar projects. Other future research direction are using other than lexical methods. Practical implications: The obtained outcomes allow for positive thinking about the possibility of using sentiment analysis in project management. This will require the definition of appropriate indicators and the definition of methods for their use. Originality/value The novelty of the paper is comparison stakeholders (users) sentiment with external factor influencing on project.(original abstract)
Pełny tekst
  1. Alesinloye, J.A., Groarke, E., Babu, J., Srinivasan, S., Curran, G., Dennehy, D. (2019). Sentiment analysis of open source software community mailing list: a preliminary analysis. Proceedings of the 15th International Symposium on Open Collaboration, pp. 1-5. OpenSym '19. New York, NY, USA: Association for Computing Machinery.
  2. Arora, S., Mayfield, E., Penstein-Rosé, C., Nyberg, E. (2010). Sentiment Classification Using Automatically Extracted Subgraph Features. Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, Association for Computational Linguistics, Los Angeles, pp. 131-139.
  3. Aydogan, E., Akcayol, M.A. (2016) A Comprehensive Survey for Sentiment Analysis Tasks Using Machine Learning Techniques. Proceedings of the 2016 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Vol. 37. C. Badica, M. Cosulschi, A.M. Florea, P. Koprinkova-Hristova, T. Yildirim. New York: IEEE.
  4. Bandhakavi, A., Wiratunga, N., Massie, S., Deepak, P. (2017). Lexicon Generation for Emotion Detection from Text. IEEE Intelligent Systems, Vol. 32, pp. 102-108, doi: 10.1109/MIS.2017.22.
  5. Biswas, E., Vijay-Shanker, K., Pollock, L. (2019) Exploring Word Embedding Techniques to Improve Sentiment Analysis of Software Engineering Texts. 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), IEEE, pp. 68-78.
  6. Bollen, J., Mao, H., Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, Vol. 2, pp. 1-8.
  7. Bukovina, J. (2016). Social media big data and capital markets-An overview. Journal of Behavioral and Experimental Finance, Vol. 11, pp. 18-26.
  8. Cleveland, W.S. Grosse, E., Shyu, W.M. (1992). Local regression models. In: J.M. Chambers, T.J. Hastie (Eds.), Statistical Models. Wadsworth & Brooks/Cole.
  9. Creamer, G.G., Ren, Y., Nickerson, J.V. (2013). Impact of Dynamic Corporate News Networks on Asset Return and Volatility. Proceedings of the 2013 International Conference on Social Computing, pp. 809-814.
  10. Dinov, I.D. (2018). Natural Language Processing/Text Mining. In: I.D. Dinov (ed.), Data Science and Predictive Analytics: Biomedical and Health Applications Using R (pp. 659-95). Cham: Springer International Publishing.
  11. Ghosh, D. (2021). Impact of the Covid-19 Pandemic on the Expression of Emotions in Social Media. Multiple Criteria Decision Making , Vol. 15, pp. 23-35
  12. Gupta, N., Gilbert, M., Di Fabbrizio, G. (2012). Emotion Detection in Email Customer Care, Computational Intelligence, Vol. 29, pp. 10-16, doi: 10.1111/j.1467-8640.2012.00454.x.
  13. Hu, M., Liu, B. (2004). Mining and Summarizing Customer Reviews. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle: ACM.
  14. Islam, M.R., Zibran, M.F. (2018). A comparison of software engineering domain specific sentiment analysis tools. 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 487-91.
  15. Kumar, A., Kawahara, D., Kurohashi, S. (2018). Knowledge-enriched Two-layered Attention Network for Sentiment Analysis. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 2, pp. 253-258.
  16. Laurent, S., Andrew, M. (2008). Understanding Open Source and Free Software Licensing. O'Reilly Media.
  17. Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M., Oliveto, R. (2018). Sentiment analysis for software engineering: how far can we go? Proceedings of the 40th International Conference on Software Engineering, pp. 94-104. ICSE '18. New York, NY, USA: Association for Computing Machinery.
  18. Natural language processing. Available online Natural_language_processing, 15.12.2021.
  19. Obaidi, M., Klünder, J. (2021) Development and Application of Sentiment Analysis Tools in Software Engineering: A Systematic Literature Review. Evaluation and Assessment in Software Engineering, pp. 80-89.
  20. Oliveira, N., Cortez, P., Areal, N. (2017). The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Systems with Applications, Vol. 73, pp. 125-144.
  21. Available online, 10.10.2022.
  22. Pennington, J., Socher, R., Manning, Ch.D. (2014). GloVe: Global Vectors for Word Representation.
  23. Plutchik, R. (1980). Emotion: A Psychoevolutionary Synthesis. New York: Harper and Row.
  24. R Development Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,
  25. Saif, M., Turney, P. (2010). Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon. Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26-34, Los Angeles, CA.
  26. Seng, J.-L., Yang, H.-F. (2017). The association between stock price volatility and financial news? A sentiment analysis approach. Kybernetes, Vol. 46, Iss. 8, pp. 1341-1365.
  27. Sentiment analysis. Available online, 14.04.2021.
  28. Thelwall, M., Buckley, K., Paltoglou, G., D. Cai, D., Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, Vol. 61, Iss. 12, pp. 2544-2558.
  29. Tourani, P., Yiang, Y., Adams, B. (2017). Monitoring sentiment in open source mailing lists: exploratory study on the apache ecosystem. Proceedings of 24th Annual International Conference on Computer Science and Software Engineering, CASCON'14, pp. 34-44.
  30. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.
  31. Wiebe, J., Wilson, T., Cardie, C. (2005). Annotating Expressions of Opinions and Emotions in Language, Language Resources and Evaluation, Vol. 39, Iss. 2-3, pp. 165-210.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu