BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Balcerak Alicja (Wrocław University of Science and Technology), Woźniak Jacek (University of Economics and Human Sciences in Warsaw, Poland), Zbuchea Alexandra (National University of Political Studies and Public Administration (SNSPA), Rumunia)
Tytuł
Predictors of Fairness Assessment for Social Media Screening in Employee Selection
Źródło
Journal of Entrepreneurship, Management and Innovation (JEMI), 2023, vol. 19, nr 2, s. 99-126, tab., rys., bibliogr. s. 119-124
Tytuł własny numeru
Weathering the Storm: Innovation-Driven Human Resource Management Practices
Słowa kluczowe
Portale internetowe, Media społecznościowe, Technologie informacyjne i telekomunikacyjne, Selekcja personalna, e-rekrutacja
Web portals, Social media, Information and Communication Technology (ICT), Personnel selection, e-recruitment
Uwagi
Klasyfikacja JEL: M51, M54, O3
streszcz., summ.
Firma/Organizacja
Linkedln, Facebook
Linkedln, Facebook
Abstrakt
CEL: Celem tej pracy jest analiza czynników wpływających na odbiór przez potencjalnych kandydatów przeglądu w trakcie procesu selekcji zawartości ich prywatnych (reprezentowanych przez Facebook) i profesjonalnych (LinkedIn) portali społecznościowych, a w szczególności zbadanie jak ta praktyka jest odbierana przez innowacyjnych kandydatów. METODYKA: Dane zostały pozyskane drogą e-kwestionariusza ankiety w 2021 roku. W celu ustalenia predyktorów postrzeganej uczciwości przeglądu kont na Facebooku i LinkedInie w ramach selekcji kandydatów do pracy zastosowano wielokrotną analizę regresji z eliminacją wsteczną. WYNIKI: Wyniki badań potwierdziły, że postrzegana uczciwość selekcji w oparciu o dane z mediów społecznościowych (cybervetting) kandydatów do pracy na podstawie przeglądu konta Facebook jest oceniana istotnie niżej niż w przypadku konta LinkedIn, natomiast postrzeganie naruszenie prywatności w trakcie selekcji w oparciu o dane z mediów społecznościowych jest istotnie wyższe w przypadku przeglądu konta Facebook. Wielokrotna analiza regresji z eliminacją wsteczną wykazała, że spośród przewidywanych predyktorów postrzeganej uczciwości przeglądu kont portali społecznościowych w trakcie selekcji kandydatów do pracy (poczucie naruszenia prywatności, osobista innowacyjność, zarządzanie własnym wizerunkiem w sieci, awersja do ryzyka, umiejętność kontrolowania informacji na portalu społecznościowym, ponadprzeciętna samoocena jakości pracy, ogólna troska o prywatność w internecie oraz - w przypadku LinkedIn - posiadanie konta na tym portalu) najlepszym predyktorem zarówno w przypadku prywatnych (Facebook), jak i profesjonalnych (LinkedIn) portali społecznościowych jest poczucie naruszenia prywatności. Innym istotnym predyktorem postrzeganej uczciwości przeglądu obu tych typów portali społecznościowych jest zarządzanie własnym wizerunkiem w sieci, natomiast osobista innowacyjność zwiększa akceptację skanowania w procesie selekcji portali prywatnych (Facebook). IMPLIKACJE: Niniejsze badanie przyczynia się do poszerzenia wiedzy na temat postrzeganej sprawiedliwości narzędzi selekcji opartych na technologiach informacyjno-komunikacyjnych, a w szczególności przeglądu kont portali społecznościowych w trakcie selekcji kandydatów do pracy. Poszerza wiedzę na temat możliwości zastosowania analizy treści serwisów społecznościowych w przypadku polskich, zwłaszcza innowacyjnych, kandydatów. Artykuł zawiera również kilka praktycznych zaleceń, które mają pomóc organizacjom w przypadku stosowania analizy treści portali społecznościowych w trakcie selekcji kandydatów, by minimalizować u nich poczucie naruszenia prywatności i tym samym zwiększać postrzeganie uczciwości tego działania. ORYGINALNOŚĆ I WARTOŚĆ: Jest to pierwsze zastosowanie cybervetting scale na polskiej próbie, co jest korzystne ze względu na możliwość porównania danych z różnych krajów. Stwierdziliśmy, że działania skoncentrowane na kreowaniu własnego wizerunku w sieci sprzyjają większej akceptacji selekcji w oparciu o dane z mediów społecznościowych (cybervetting), co może zmniejszać trafność predykcyjną tego typu praktyk selekcyjnych. (abstrakt oryginalny)

PURPOSE: The purpose of this paper is to analyze the factors that determine the response of potential candidates to the screening of private (represented by Facebook) and professional (LinkedIn) social networking sites (SNS) for personnel selection purposes, and in particular to examine how SNS screening in the personnel selection process is perceived by innovative candidates. METHODOLOGY: The empirical data were obtained through an e-questionnaire survey among c. 150 young Polish Internet users in 2021. Multiple linear regression with backward elimination was used to determine the predictors of perceived justice of Facebook and LinkedIn screening in the selection process. FINDINGS: The results confirmed previous scientific findings that the perceived justice of Facebook cybervetting is significantly lower than for LinkedIn and the privacy invasiveness of Facebook screening was rated significantly higher than for LinkedIn. The results of linear regression with backward elimination indicated that among the assumed factors influencing the perceived justice of Facebook and LinkedIn screening in the selection process (i.e., privacy invasiveness, personal innovativeness, self-image management, risk aversion, ability to control a social networking site's information, above average performance self-assessment, a general concern for internet privacy, and - in the case of LinkedIn - having an account on LinkedIn) the perceived privacy invasiveness is the best predictor of perceived justice of both private (Facebook), and professional (LinkedIn) social networking site screening for personnel selection purposes. Also, the candidate's self-image management affects the perceived justice of both types of social media used as selection tools, whereas personal innovativeness increases the acceptance of private social media (Facebook) scanning for this purpose. IMPLICATIONS: This study contributes to the body of knowledge regarding the perceived justice of ICT-based selection tools, and of social networking site screening for personnel selection purposes in particular. It expands the knowledge about the applicability of social networking site content analysis of Polish users, especially of innovative candidates. The paper also provides some practical recommendations to help organizations apply social media content analysis in a way that minimizes potential candidates' perception of privacy invasiveness and increases their fairness perception. ORIGINALITY AND VALUE: It is the first application of a cybervetting scale on a Polish sample that is advantageous in terms of comparability of data from different countries. We found that activities focused on creating one's online image foster a higher acceptance of cybervetting that can diminish predictive validity of this type of selection practices. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9, 204-215. https://doi.org/10.1287/isre.9.2.204.
  2. Aguado, D., Rico, R., Rubio, V., & Fernández, L. (2016). Applicant reactions to social network web use in personnel selection and assessment. Journal of Work and Organizational Psychology, 32, 183-190. https://doi.org/10.1016/j.rpto.2016.09.001
  3. Ahmad, M. (2018). Review of the technology acceptance model (TAM) in internet banking and mobile banking. International Journal of Information Communication Technology and Digital Convergence, 3(1), 23-41.
  4. Anderson, N., Salgado, J. F., & Hülsheger, U. R. (2010). Applicant reactions in selection: Comprehensive meta-analysis into reaction generalization versus situational specificity: Applicant reactions meta-analysis. International Journal of Selection and Assessment, 18, 291-304. https://doi.org/10.1111/j.1468-2389.2010.00512.x
  5. Balcerak, A., & Woźniak, J. (2020a). The synchronous video interviews in personnel selection processes. European Research Studies Journal, 24(2), 3-13. http://dx.doi.org/10.35808/ersj/2108
  6. Balcerak, A., & Woźniak, J. (2020b). Process favorability for different types of selection methods. In K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges - Proceedings of the 35th International Business Information Management Association Conference (pp. 4832-14842). Retrieved from https://www.proceedings.com/56205.html
  7. Balcerak, A., & Woźniak, J. (2021). Reactions to some ICT-based personnel selection tools. Economics and Sociology, 14(1), 214-231. http://dx.doi.org/10.14254/2071-789X.2021/14-1/14
  8. Bauer, T. N., Truxillo, D. M., Tucker, J. S., Weathers, V., Bertolino, M., Erdogan, B., & Campion, M. A. (2006). Selection in the information age: The impact of privacy concerns and computer experience on applicant reactions. Journal of Management, 32, 601-621. http://dx.doi.org/10.1177/0149206306289829
  9. Beckers, J. J., & Schmidt, H. G. (2003). Computer experience and computer anxiety. Computers in Human Behavior, 19(6), 785-797. https://doi.org/10.1016/S0747-5632(03)00005-0
  10. Black, S., Stone, D., & Johnson, A. (2015). Use of social networking websites on applicants' privacy. Employee Responsibilities and Rights Journal, 27, 115-159. http://dx.doi.org/10.1007/s10672-014-9245-2
  11. Błaszczak, A. (2018). W mediach społecznościowych możesz wypłynąć, ale i karierę zatopić. Retrieved from https://cyfrowa.rp.pl/biznes-ludzie-startupy/art16911671-w-mediach-spolecznosciowych-mozesz-wyplynac-ale-i-kariere-zatopic.
  12. Bohnert, D., & Ross,W. H. (2010). The influence of social networking websites on the evaluation of job candidates. Cyberpsychology, Behavior, and Social Networking, 13(3), 341-347. https://doi.org/10.1089/cyber.2009.0193
  13. Bowen, C.-C., Stevenor, B.A. & Davidson, S. D. (2021). How people perceive different types of social media screening and their behavioral intention to pursue employment. Computers in Human Behavior Reports, 3, 100089. https://doi.org/10.1016/j.chbr.2021.100089.
  14. Chauhan, R. S., Buckley, M. R., & Harvey, M. (2013). Facebook and personnel section: What's the big deal? Organizational Dynamics, 42(2), 126-134. https://doi.org/10.1016/j.orgdyn.2013.03.006
  15. Cook, R., Jones-Chick, R., Roulin, N., & O'Rourke, K. (2020). Job seekers' attitudes toward cybervetting: Scale development, validation, and platform comparison. International Journal of Selection and Assessment, 28(4), 383-398. https://doi.org/10.1111/ijsa.12300
  16. Curran, M.J., Draus, P., Schrager, M. & Zappala, S. (2014). College students and HR professionals: Conflicting views on information available on Facebook. Human Resource Management Journal, 24, 442-458. https://doi.org/10.1111/1748-8583.12033
  17. Cubrich, M., King, R.T., Mracek, D.L., Strong, J.M.G., Hassenkamp, K., Vaughn, D., & Dudley, N.M. (2021). Examining the criterion-related validity evidence of LinkedIn profile elements in an applied sample. Computers in Human Behavior, 120, 106742. https://doi.org/10.1016/j.chb.2021.106742.
  18. Disatnik, D., & Steinhart, Y. (2015). Need for cognitive closure, risk aversion, uncertainty changes, and their effects on investment decisions. Journal of Marketing Research, 52(3), 349-359. https://doi.org/10.1509/jmr.13.0529
  19. Esch, P., Black, J., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215-222. https://doi.org/10.1016/j.chb.2018.09.009
  20. Folger, N., Brosi, P., Stumpf-Wollersheim, J., & Welpe, I. M. (2021). Applicant reactions to digital selection methods: A signaling perspective on innovativeness and procedural justice. Journal of Business and Psychology, 37(4), 735-757. https://doi.org/10.1007/s10869-021-09770-3 1-23
  21. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  22. Gardner, A.K., & Dunkin, B.J. (2019). Applicant perceptions of new selection systems are a function of their performance in the selection procedure. The American Journal of Surgery, 217(2), 272-275. https://doi.org/10.1016/j.amjsurg.2018.09.030
  23. Gonzalez, R., Gasco, J., & Llopis, J. (2019). University students and online social networks: Effects and typology. Journal of Business Research, 101, 707-714. https://doi.org/10.1016/j.jbusres.2019.01.011
  24. Gruzd, A., Jacobson, J., & Dubois, E. (2020). Cybervetting and the public life of social media data. Social Media + Society, 6(2), 2056305120915618. https://doi.org/10.1177/2056305120915618
  25. Jacobson, J., & Gruzd, A. (2020). Cybervetting job applicants on social media: The new normal? Ethics and Information Technology, 22, 175-195. https://doi.org/10.1007/s10676-020-09526-2
  26. Kaplan, A.M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59-68. https://doi.org/10.1016/j.bushor.2009.09.003
  27. Kemp, S. (2022). Digital 2022: Global overview report. Retrieved from https://datareportal.com/reports/digital-2022-global-overview-report
  28. Kim, J. H., Kim, M. S., Hong, R. K., & Ko, J. W. (2019). Continuous use intention of corporate mobile SNS users and its determinants: application of extended technology acceptance model. Journal of System and Management Sciences, 9(4), 12-28. https://doi.org/10.33168/JSMS.2019.0402
  29. Konradt, U., Garbers, Y., Böge, M., Erdogan, B., & Bauer, T. N. (2017). Antecedents and consequences of procedural fairness perceptions in personnel selection: A three-year longitudinal study. Group and Organization Management, 42, 113-146. https://doi.org/10.1177/1059601115617665
  30. Koukaras, P., Tjortjis, C., & Rousidis, D. (2020). Social media types: introducing a data driven taxonomy. Computing, 102, 295-340. https://doi.org/10.1007/s00607-019-00739-y
  31. Langer, M., König, C.J., & Fitili, A. (2018). Information as a double-edged sword: The role of computer experience and information on applicant reactions towards novel technologies for personnel selection. Computers in Human Behavior, 81, 19-30. https://doi.org/10.1016/j.chb.2017.11.036
  32. Latus, K. (2018). Media społecznościowe odgrywają coraz ważniejszą rolę w procesie rekrutacji. Są szansą, ale i zagrożeniem dla pracodawców. Retrieved from https://biznes.newseria.pl/news/media-spolecznosciowe,p2118127781
  33. Levinson, P. (2010). Nowe media. Kraków: Wydawnictwo WAM.
  34. Madera, J.M. (2012). Using social networking websites as a selection tool: The role of selection process fairness and job pursuit intentions. International Journal of Hospitality Management, 31, 1276- 1282. https://doi.org/10.1016/j.ijhm.2012.03.008
  35. McCarthy, J.M., Bauer, D.M., Truxillo, T.N., Anderson, N.R., Costa, A.C., & Ahmed, S.A. (2017). Applicant perspectives during selection: A review addressing "So what?," "What's new?," and "Where to next?". Journal of Management, 43(6), 1693-1725. https://doi.org/10.1177/0149206316681846
  36. McCarthy, J. M., Bauer D.M., Truxillo, T.N., Campion, M.C, Van Iddekinge, C.H., & Campion, M.A. (2017a). Using pre-test explanations to improve test-taker reactions: Testing a set of ''wise" interventions. Organizational Behavior and Human Decision Processes, 141, 43-56. https://doi.org/10.1016/j.obhdp.2017.04.002
  37. Mirowska, A. (2020). AI evaluation in selection. Effects on application and pursuit intentions. Journal of Personnel Psychology, 19(3), 142-149. https://psycnet.apa.org/doi/10.1027/1866-5888/a000258
  38. Mochi, F., Bissola, R. & Imperatori, B. (2017). Professional and non-professional social media as recruitment tools: The impact on job seekers' attraction and intention to apply. In Bondarouk, T., Ruël, H. & Parry, E. (Eds.). Electronic HRM in the Smart Era (pp. 109-135). Bingley: Emerald. https://doi.org/10.1108/978-1-78714-315-920161005
  39. Nikolaou, I. (2014). Social networking web sites in job search and employee recruitment. International Journal of Selection and Assessment, 22(2), 179-189. https://doi.org/10.1111/ijsa.12067
  40. Parasuraman, A., & Colby, C.L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59-74. https://doi.org/10.1177/1094670514539730
  41. Potosky, D., & Bobko, P. (1998). The computer understanding and experience scale: A self-report measure of computer experience. Computers in Human Behavior, 14(2), 337-348. https://doi.org/10.1016/S0747-5632(98)00011-9
  42. Richey, M., Gonibeed, A., & Ravishankar, M.N. (2018). The perils and promises of self-disclosure on social media. Information Systems Frontiers, 20, 425-437. https://doi.org/10.1007/s10796-017-9806-7
  43. Roulin, N., Langer, M., & Bourdage, J. (2021). "I" feel(s) left out: The importance of information and communication technology in personnel selection research. Industrial and Organizational Psychology, 14(3), 423-427. https://doi.org/10.1017/iop.2021.79
  44. Roulin, N., & Levashina, J. (2019). LinkedIn as a new selection method: Psychometric properties and assessment approach. Personnel Psychology, 72, 187-211. https://doi.org/10.1111/peps.12296
  45. Roth, P. L., Bobko, P., Van Iddekinge, C. H., & Thatcher, J. B. (2016). Social media in employee-selection-related decisions: A research agenda for uncharted territory. Journal of Management, 42(1), 269-298. https://doi.org/10.1177/0149206313503018
  46. Schumann, J. H., von Wangenheim, F., & Groene, N. (2014). Targeted online advertising: Using reciprocity appeals to increase acceptance among users of free web services. Journal of Marketing, 78(1), 59-75. https://doi.org/10.1509/jm.11.0316
  47. Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling consumers' adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & Marketing, 32(8), 860-873. https://doi.org/10.1002/mar.20823
  48. Suen, H. Y. (2018). How passive job candidates respond to social networking site screening. Computers in Human Behavior, 85, 396-404. https://doi.org/10.1016/j.chb.2018.04.018
  49. Social Media w Polsce 2021 - raport (2021). Retrieved from https://empemedia.pl/social-media-w-polsce-2021-nowy-raport/
  50. Stoughton, J. W., Thompson, L. F., & Meade, A. W. (2015). Examining applicant reactions to the use of social networking websites in pre-employment screening. Journal of Business and Psychology, 30, 73-88. https://doi.org/10.1007/s10869-013-9333-6
  51. Stoughton, J.W. (2016). Applicant reactions to social media in selection: Early returns and future directions. In R. Landers, & G. Schmidt (Eds.), Social Media in Employee Selection and Recruitment(pp. 249-263). Cham: Springer. https://doi.org/10.1007/978-3-319-29989-1_12
  52. Stone, D. L., Lukaszewski, K. M., Stone-Romero, E. F., & Johnson, T. L. (2013). Factors affecting the effectiveness and acceptance of electronic selection systems. Human Resource Management Review, 23, 50-70. https://doi.org/10.1016/j.hrmr.2012.06.006
  53. Studenmund, A. H. (2001). Using econometrics: A practical guide. New York: Addison Wesley Longman Inc.
  54. Szczygieł, K. (2021). Two types of social media platforms as a source of information for recruiters. (unpublished Master's thesis). Faculty of Business, University of Economics and Human Sciences, Warszawa, Poland.
  55. Truxillo, D. M., Bauer, T. N., McCarthy, J. M., Anderson, N. R., & Ahmed, S. (2018). Applicant perspectives on employee selection systems. In D. S. Ones, N. R. Anderson, C. Viswesvaran, & H. K. Sinangil (Eds.), The Handbook of Industrial, Work & Organizational Psychology. Thousand Oaks, CA: Sage. http://dx.doi.org/10.4135/9781473914940.n19
  56. Van Iddekinge, C. H., Lanivich, S. E., Roth, P. L., & Junco, E. (2016). Social media for selection? Validity and adverse impact potential of a Facebook-based assessment. Journal of Management, 42(7), 1811-1835. https://doi.org/10.1177/0149206313515524
  57. Wiechmann, D., & Ryan, A. M. (2003). Reactions to computerized testing in selection contexts. International Journal of Selection and Assessment, 11, 215-229. https://doi.org/10.1111/1468-2389.00245
  58. Wijesundara, T. R., & Xixiang, S. (2018). Social networking sites acceptance: The role of personal innovativeness in information technology. International Journal of Business and Management, 13(8), 75-85. https://doi.org/10.5539/ijbm.v13n8p75
  59. Woźniak, J. (2013). Rekrutacja-teoria i praktyka. Warszawa: PWN.
  60. Woźniak, J. (2019). Akceptacja różnych form narzędzi selekcyjnych - przegląd literatury i wstępne wyniki badania. Zarządzanie Zasobami Ludzkimi, 5(130), 11-39. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.desklight-5bceac14-3218-44ad-b55f-2fe68f8f3703
  61. Woźniak, J. (2020). Zarządzanie pracownikami w dobie Internetu. Warszawa: Wolters Kluwer.
  62. Zacny, B., Kania, K., & Sołtysik, A. (2019). Stosunek potencjalnych kandydatów do wykorzystania danych z mediów społecznościowych i narzędzi AI w procesie rekrutacji. Zarządzanie Zasobami Ludzkimi, 5(130), 39-56. http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-19ef1fb1-cd4c-4f28-ad18-bd4752a2574a
  63. Zhang, L., Van Iddekinge, C. H., Arnold, J. D., Roth, P. L., Lievens, F., Lanivich, S. E., & Jordan, S. L. (2020). What's on job seekers' social media sites? A content analysis and effects of structure on recruiter judgments and predictive validity. Journal of Applied Psychology, 105(12), 1530-1546. https://psycnet.apa.org/doi/10.1037/apl0000490
  64. Zdonek, I., Hysa, B. & Mularczyk, A. (2015). Self-promotion on the Internet. Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 234, 214-226. https://bibliotekanauki.pl/articles/590304
Cytowane przez
Pokaż
ISSN
2299-7075
Język
eng
URI / DOI
https://doi.org/10.7341/20231923
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu