BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Çağlar Macide Berna (Baskent University, Turkey), Taşkın Bihter Karagöz (Istanbul Arel University, Turkey)
Tytuł
The Effects of Using Artificial Intelligence and Robotic in Logistics Service Production: An Application in 3PLs and 4PLs
Źródło
LogForum, 2023, vol. 19, nr 3, s. 347-360, rys., tab., bibliogr. 34 poz.
Słowa kluczowe
Sztuczna inteligencja, Logistyka, Usługi, Usługi logistyczne, Bot, Robotyzacja
Artificial intelligence, Logistics, Services, Logistic services, Internet bot, Robotization
Uwagi
summ.
Abstrakt
Background: The purpose of this study is to investigate how artificial intelligence (AI) and robotic awareness, perceived organizational support, and competitive psychological climate approaches relate to turnover intention. In the literature, studies on robotic awareness and turnover intention have been undertaken in a variety of industries. In this respect, this study aims to address the absence in the literature of research on logistics services providers. This study aims to help businesses understand how to retain employees and foster a more inclusive and supportive workplace. Methods: The study utilizes survey information from 100 senior managers in the operations function of logistics service providers. The outcomes are obtained by modeling structural equations with SmartPLS. Data from the survey were gathered using the snowball sampling technique. Results: The results of the research reveal the effect of artificial intelligence and robotic awareness on competitive psychological and turnover intention. Conclusions: The study aims to explore the role of a competitive psychological climate and organizational support in mediating the relationship between AI and robotics awareness and turnover intention. We identify that awareness of AI and robotics has a considerable, favorable effect on the psychological climate of competition and turnover intention. We also find that the competitive psychological atmosphere has a substantial, favorable effect on turnover intention. In addition, organizational support has been demonstrated to have a substantial, favorable effect on turnover intention. However, it was not possible to identify the mediating role of organizational support and the psychological environment of competition in moderating the association between awareness of AI and robotics and turnover intention. On the basis of the research's findings, suggestions were made.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Aldabbas, H., Pinnington, A., & Lahrech, A. (2023). The influence of perceived organizational support on employee creativity: The mediating role of work engagement. Current Psychology, 42(8), 6501-6515. https://doi.org/10.1007/s12144-021-01992-1
  2. Acemoğlu, D., Restrepo, P. (2017). Robots and Jobs: Evidence from Us Labor Markets NBER WorkingPaper No. w23285. https://doi.org/10.3386/w23285
  3. Akhtar, P., Kaur, S., & Punjaisri, K. (2017). Chain coordinators' strategic leadership and coordination effectiveness: New Zealand-Euro agri-food supply chains. European Business Review, 29(5), 515-533. https://doi.org/10.1108/EBR-08-2015-0082
  4. Baldassarre, F., Ricciardi, F., & Campo, R. (2017, October). The advent of Industry 4.0 in manufacturing industry: Literature review and growth opportunities. In DIEM: Dubrovnik International Economic Meeting (Vol. 3, No. 1, pp. 632-643). Sveučilište u Dubrovniku.
  5. Berger, R. (2016). The Industrie 4.0 transition quantified. How the fourth industrial revolution is reshuffling the economic, social and industrial model.
  6. Brougham, D., Haar, J. (2018). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees' perceptions of our future workplace. Journal of Management & Organization, 24(2), 239-257. https://doi.org/10.1017/jmo.2016.55
  7. Calitz, A. P., Poisat, P., & Cullen, M. (2017). The future African workplace: The use of collaborative robots in manufacturing. SA Journal of Human Resource Management, 15(1), 1-11.
  8. Cezanne, C., & Saglietto, L. (2015). Redefining the boundaries of the firm: the role of 4PLs. The International Journal of Logistics Management, 26(1), 30-41. https://doi.org/10.1108/IJLM-06-2012-0054
  9. Dawley, D., Houghton, J. D., & Bucklew, N. S. (2010). Perceived organizational suport and turnover intention: The mediating effects of personal sacrifice and job fit. The Journal of social psychology, 150(3), 238-257. https://doi.org/10.1080/00224540903365463
  10. Evjemo, L. D., Gjerstad, T., Grøtli, E. I., & Sziebig, G. (2020). Trends in smart manufacturing: Role of humans and industrial robots in smart factories. Current Robotics Reports, 1, 35-41. https://doi.org/10.1007/s43154-020-00006-5
  11. Gim, G. C., Desa, N. M., & Ramayah, T. (2015). Competitive psychological climate and turnover intention with the mediating role of affective commitment. Procedia- Social and Behavioral Sciences, 172, 658-665. https://doi.org/10.1016/j.sbspro.2015.01.416
  12. Grabowska, S. (2020). Smart factories in the age of Industry 4.0. Management systems in production engineering, 28(2), 90-96. https://doi.org/10.2478/mspe-2020-0014
  13. Hair, J.F., Tomas, G., Hult, M., Ringle, C.M. and Sarstedt, M. (2014), A Primer on Partial Least Square Structural Equations Modeling (PLS-SEM), Sage, Los Angeles, LA.
  14. Hassan, M., Akram, A., & Naz, S. (2012). The relationship between person organization fit, person-job-fit and turnover intention in banking sector of Pakistan: The mediating role of psychological climate. International Journal of Human Resource Studies, 2(3), 172. https://doi.org/10.5296/ijhrs.v2i3.2286
  15. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8
  16. Khaliq, A., Waqas, A., Nisar, Q. A., Haider, S., & Asghar, Z. (2022). Application of AI and robotics in hospitality sector: A resource gain and resource loss perspective. Technology in Society, 68, 101807. https://doi.org/10.1016/j.techsoc.2021.101807
  17. Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6, 239-242. https://doi.org/10.1007/s11576-014-0424-4
  18. Li, J. J., Bonn, M. A., & Ye, B. H. (2019). Hotel employee's artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tourism Management, 73, 172-181. https://doi.org/10.1016/j.tourman.2019.02.006
  19. Mendis, M. V. S. (2017). The impact of reward system on employee turnover intention: A study on logistics industry of Sri Lanka. International journal of scientific & technology research, 6(9), 67-72.
  20. Mehmann, J., Teuteberg, F., & Freye, D. (2013). Requirements on a 4PL-Platform in After-Crop Logistics.
  21. Pavlić Skender, H., Mirković, P. A., & Prudky, I. (2017). The role of the 4PL model in a contemporary supply chain. Pomorstvo, 31(2), 96-101. https://doi.org/10.31217/p.31.2.3
  22. Potkonjak, V., Svetozarevic, B., Jovanovic, K., & Holland, O. (2011). The puller-follower control of compliant and noncompliant antagonistic tendon drives in robotic systems. International Journal of Advanced Robotic Systems, 8(5), 69.
  23. Savela, N., Turja, T., Oksanen, A. (2018). Social Acceptance of Robots in Different Occupational Fields: A Systematic Literature Review, International Journal of Social Robotics, 10, 493-502. https://doi.org/10.1007/s12369-017-0452-5
  24. Segovia-Perez, M., Jianu, B., Tussyadiah, I. (2023, January). Assessing Turnover Intentions of Algorithmically Managed Hospitality Workers. In ENTER22 e-Tourism Conference (pp. 349-354). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25752-0_39
  25. Sumardjo, M., & Supriadi, Y. N. (2023). Perceived Organizational Commitment Mediates the Effect of Perceived Organizational Support and Organizational Culture on Organizational Citizenship Behavior. Quality-Access to Success, 24(192), 376-384. https://doi.org/10.47750/QAS/24.192.45
  26. Taherdoost, H. (2016). Sampling methods in research methodology; how to choose a sampling technique for research. How to choose a sampling technique for research (April 10, 2016). https://doi.org/10.2139/ssrn.3205035
  27. Takaya, R., & Ramli, A. H. (2020, September). Perceived organizational support and turnover intention. In International Conference on Management, Accounting, and Economy (ICMAE 2020) (pp. 59-63). Atlantis Press. https://doi.org/10.2991/aebmr.k.200915.015
  28. Thu Suong, H. T. (2020). Impacts of job stress and dissatisfaction on turnover intention. A critical analasys of logistics industry-evidence from Vietnam.
  29. Tupa, J., Simota, J., & Steiner, F. (2017). Aspects of risk management implementation for Industry 4.0. Procedia manufacturing, 11, 1223-1230. https://doi.org/10.1016/j.promfg.2017.07.248
  30. Wang, Q., & Wang, C. (2020). Reducing turnover intention: perceived organizational support for frontline employees. Frontiers of Business Research in China, 14(1), 1-16. https://doi.org/10.1186/s11782-020-00074-6
  31. Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS quarterly, 177-195. https://doi.org/10.2307/20650284
  32. Win, A. (2008). The value a 4PL provider can contribute to an organization. International Journal of Physical Distribution & Logistics Management, 38(9), 674-684. https://doi.org/10.1108/09600030810925962
  33. Yıldız, S. (2018). Turist rehberliği mesleğinde robot rehberlerin yükselişi. Süleyman Demirel University Visionary Journal, 10(23), 164-177. https://doi.org/10.21076/vizyoner.481225
  34. Zacharia, Z. G., Sanders, N. R., Nix, N. W. (2011). The emerging role of the third-party logistics provider (3PL) as an orchestrator. Journal of business logistics, 32(1), 40-54. https://doi.org/10.1111/j.2158-1592.2011.01004.x
Cytowane przez
Pokaż
ISSN
1895-2038
Język
eng
URI / DOI
http://dx.doi.org/10.17270/J.LOG.2023.856
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu