BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Malik Mohit (National Institute of Food Technology Entrepreneurship and Management, Sonipat, India), Gahlawat Vijay Kumar (National Institute of Food Technology Entrepreneurship and Management, Sonipat, India)
Tytuł
Digital Interoperability and Transformation Using Industry 4.0 Technologies in the Dairy Industry: an SLR and Bibliometric Analysis
Źródło
LogForum, 2023, vol. 19, nr 3, s. 461-479, rys., tab., wykr., bibliogr. 109 poz.
Słowa kluczowe
Przemysł 4.0, Technologie cyfrowe, Przemysł mleczarski, Internet rzeczy, Sztuczna inteligencja, Analiza bibliometryczna
Industry 4.0, Digital technologies, Dairy industry, Internet of Things (IoT), Artificial intelligence, Bibliometric analysis
Uwagi
summ.
Abstrakt
Background: The dairy industry has gradually adopted cutting-edge technology in the past few years. This review explores the evolution and interventions of Artificial Intelligence (AI), Machine Learning (ML), and Industry 4.0 in the dairy industry through a systematic literature review and bibliometric analysis. Methods: The Web of Science, Scopus, etc. databases were used for bibliometric analysis from 1999 to 2022 related to the role of technology in the dairy industry. Analysis shows the tremendous growth in technology adoption after 2015, including Industry 4.0, blockchain, and traceability, which have recently emerged in the dairy industry. Results: The findings suggest that traceability, data management, environmental impacts, and dairy supply chain operations need further exploration. A technological intervention wheel has been generated based on findings from the dairy sector. The current analysis demonstrates that such a bibliometric analysis and a systematic study were previously missing in the dairy industry, especially in a technological context. Conclusions: This review paves the way for future research on emerging technologies such as traceability, blockchain, and Industry 4.0 in the dairy industry. The impacts of technological intervention on the circular economy and sustainable practices in the dairy industry are a potential area of future research. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Aamer, A. M., Al-Awlaqi, M. A., Affia, I., Arumsari, S., Mandahawi, N. 2021. The internet of things in the food supply chain: adoption challenges. Benchmarking, 288, 2521-2541. https://doi.org/10.1108/BIJ-07-2020-0371
  2. Akbar, M. O., Shahbaz Khan, M. S., Ali, M. J., Hussain, A., Qaiser, G., Pasha, M., Pasha, U., Missen, M. S., Akhtar, N. 2020. IoT for Development of Smart Dairy Farming. Journal of Food Quality, 2020. https://doi.org/10.1155/2020/4242805
  3. Alonso, R. S., Sittón-Candanedo, I., García, Ó., Prieto, J., Rodríguez-González, S. 2020. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Networks, 98, 102047. https://doi.org/https://doi.org/10.1016/j.adhoc.2019.102047
  4. Bahlo, C., Dahlhaus, P., Thompson, H., Trotter, M. 2019. The role of interoperable data standards in precision livestock farming in extensive livestock systems: A review. Computers and Electronics in Agriculture, 156November 2018, 459-466. https://doi.org/10.1016/j.compag.2018.12.007
  5. Borah, S. 2017. Production Potentiality and Marketing of Cooperative Dairy Products: A Case Study at Gokul Sahakari Dudh Sangh, Maharashtra. IOSR Journal Pf Agriculture and Veterinary Science, 109, 25-32. https://doi.org/10.9790/2380-1009012532
  6. Bronson, K., Knezevic, I. 2016. Big Data in food and agriculture. Big Data & Society, June, 1-5. https://doi.org/10.1177/2053951716648174
  7. Burke, T., Young, I., Papadopoulos, A. 2016. Assessing food safety knowledge and preferred information sources among 19-29 year olds. Food Control, 69, 83-89. https://doi.org/10.1016/j.foodcont.2016.04.019
  8. Cabrera, V. E., Barrientos-Blanco, J. A., Delgado, H., Fadul-Pacheco, L. 2020. Symposium review: Real-time continuous decision making using big data on dairy farms. Journal of Dairy Science, 1034, 3856-3866. https://doi.org/10.3168/jds.2019-17145
  9. Cabrera, V. E., Fadul-Pacheco, L. 2021. Future of dairy farming from the Dairy Brain perspective: Data integration, analytics, and applications. In International Dairy Journal Vol. 121. Elsevier Ltd. https://doi.org/10.1016/j.idairyj.2021.105069
  10. Cannas, V. G., Ciccullo, F., Pero, M., Cigolini, R. 2020. Sustainable innovation in the dairy supply chain: enabling factors for intermodal transportation. International Journal of Production Research. https://doi.org/10.1080/00207543.2020.1809731
  11. Casino, F., Kanakaris, V., Dasaklis, T. K., Moschuris, S., Stachtiaris, S., Pagoni, M., Rachaniotis, N. P. 2020. Blockchain-based food supply chain traceability: a case study in the dairy sector. International Journal of Production Research, 1-13. https://doi.org/10.1080/00207543.2020.1789238
  12. Cavite, H. J., Mankeb, P., Suwanmaneepong, S. 2022. Community enterprise consumers' intention to purchase organic rice in Thailand: the moderating role of product traceability knowledge. British Food Journal, 1244, 1124-1148. https://doi.org/10.1108/BFJ-02-2021-0148
  13. Chander, B., Pal, S., De, D., Buyya, R. 2022. Artificial Intelligence-based Internet of Things for Industry 5.0. In Internet of Things Issue February. https://doi.org/10.1007/978-3-030-87059-1_1
  14. Chapman, J., Power, A., Netzel, M. E., Sultanbawa, Y., Smyth, H. E., Truong, V. K., Cozzolino, D. 2022. Challenges and opportunities of the fourth revolution: a brief insight into the future of food. Critical Reviews in Food Science and Nutrition, 6210, 2845-2853. https://doi.org/10.1080/10408398.2020.1863328
  15. Charlebois, S., Haratifar, S. 2015. The perceived value of dairy product traceability in modern society: An exploratory study. Journal of Dairy Science, 985, 3514-3525. https://doi.org/10.3168/jds.2014-9247
  16. Chaturvedi, S., Gupta, A. K., Yadav, R. L., Sharma, A. K. 2013. Life Time Milk Amount Prediction in Dairy Cows using Artificial Neural Networks. In International Journal of Recent Research and Review: Vol. V.
  17. Chen, M., Mao, S., Liu, Y. 2014. Big data: A survey. Mobile Networks and Applications, 192, 171-209. https://doi.org/10.1007/s11036-013-0489-0
  18. Cleary, F., Mcgrath, M. J., Gaiser, M., O'Connor, J. F., Everard, M., Holland, J. 1999. Development of a low cost data acquisition system for milk powder production line monitoring. Journal of Dairy Science, 829, 2039-2048. https://doi.org/10.3168/jds.S0022-03029975442-1
  19. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., Herrera, F. 2011. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 51, 146-166. https://doi.org/https://doi.org/10.1016/j.joi.2010.10.002
  20. Cockburn, M. 2020. Review: Application and prospective discussion of machine learning for the management of dairy farms. In Animals Vol. 10, Issue 9, pp. 1-22. MDPI AG. https://doi.org/10.3390/ani10091690
  21. Crosson, P., Foley, P. A., Shalloo, L., O'Brien, D., Kenny, D. A. 2010. Greenhouse gas emissions from Irish beef and dairy production systems. Advances in Animal Biosciences, 11, 350. https://doi.org/10.1017/s2040470010004930
  22. da Rosa Righi, R., Goldschmidt, G., Kunst, R., Deon, C., André da Costa, C. 2020. Towards combining data prediction and internet of things to manage milk production on dairy cows. Computers and Electronics in Agriculture, 169. https://doi.org/10.1016/j.compag.2019.105156
  23. Daftary, D. 2019. Market-driven dairying and the politics of value, labor and affect in Gujarat, India. Journal of Peasant Studies, 461, 80-95. https://doi.org/10.1080/03066150.2017.1324425
  24. Dash, A., Sarmah, S. P., Tiwari, M. K., Jena, S. K. 2022. Modeling traceability in food supply chain. Benchmarking. https://doi.org/10.1108/BIJ-03-2022-0156
  25. Deshmukh, M., Kele, V. 2015. energy management View project Application of IOT in Dairy Industry View project. In ORIENTAL JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY Computer Applications in Dairy Industry Article. http://www.mavtechglobal.com
  26. Etherington, W. G., Kinsel, M. L., Marsh, W. E. 1995. Options in dairy data management. The Canadian Veterinary Journal. La Revue Vétérinaire Canadienne, 361, 28-33.
  27. Fadul-Pacheco, L., Delgado, H., Cabrera, V. E. 2021. Exploring machine learning algorithms for early prediction of clinical mastitis. International Dairy Journal, 119, 105051. https://doi.org/10.1016/j.idairyj.2021.105051
  28. Fadul-Pacheco, L., Wangen, S. R., da Silva, T. E., Cabrera, V. E. 2022. Addressing Data Bottlenecks in the Dairy Farm Industry. Animals, 126, 1-17. https://doi.org/10.3390/ani12060721
  29. Fuentes, S., Viejo, C. G., Cullen, B., Tongson, E., Chauhan, S. S., Dunshea, F. R. 2020. Artificial intelligence applied to a robotic dairy farm to model milk productivity and quality based on cow data and daily environmental parameters. Sensors Switzerland, 2010. https://doi.org/10.3390/s20102975
  30. Galanakis, C. M., Rizou, M., Aldawoud, T. M. S., Ucak, I., Rowan, N. J. 2021. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends in Food Science and Technology, 110February, 193-200. https://doi.org/10.1016/j.tifs.2021.02.002
  31. Geary, U., Lopez-Villalobos, N., Garrick, D. J., Shalloo, L. 2010. Development and application of a processing model for the Irish dairy industry. Journal of Dairy Science, 9311, 5091-5100. https://doi.org/10.3168/jds.2010-3487
  32. Gengler, N. 2019. Symposium review: Challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation. Journal of Dairy Science, 1026, 5756-5763. https://doi.org/10.3168/jds.2018-15711
  33. Georgiadis, G. P., Kopanos, G. M., Karkaris, A., Ksafopoulos, H., Georgiadis, M. C. 2019. Optimal Production Scheduling in the Dairy Industries. Industrial and Engineering Chemistry Research, 5816, 6537-6550. https://doi.org/10.1021/acs.iecr.8b05710
  34. Gharehyakheh, A., Krejci, C. C., Cantu, J., Rogers, K. J. 2020. A Multi-Objective Model for Sustainable Perishable Food Distribution Considering the Impact of Temperature on Vehicle Emissions and Product Shelf Life. https://doi.org/10.20944/preprints202008.0108.v1
  35. Goli, A., Khademi Zare, H., Tavakkoli-Moghaddam, R., Sadeghieh, A. 2019. Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem Case study: The dairy products industry. Computers and Industrial Engineering, 137. https://doi.org/10.1016/j.cie.2019.106090
  36. Goli, A., Khademi-Zare, H., Tavakkoli-Moghaddam, R., Sadeghieh, A., Sasanian, M., Malekalipour Kordestanizadeh, R. 2021. An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand for dairy products: a case study. Network: Computation in Neural Systems, 321, 1-35. https://doi.org/10.1080/0954898X.2020.1849841
  37. Goyal, S., Goyal, G. K. 2012. Artificial Neural Networks for Dairy Industry: A Review. In Journal of Advanced Computer Science and Technology Vol. 1, Issue 3. http://www.sciencepubco.com/index.php/JACST
  38. Hassoun, A., Aït-Kaddour, A., Abu-Mahfouz, A. M., Rathod, N. B., Bader, F., Barba, F. J., Biancolillo, A., Cropotova, J., Galanakis, C. M., Jambrak, A. R., Lorenzo, J. M., Måge, I., Ozogul, F., Regenstein, J. 2022. The fourth industrial revolution in the food industry-Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 00, 1-17. https://doi.org/10.1080/10408398.2022.2034735
  39. Hassoun, A., Bekhit, A. E. D., Jambrak, A. R., Regenstein, J. M., Chemat, F., Morton, J. D., Gudjónsdóttir, M., Carpena, M., Prieto, M. A., Varela, P., Arshad, R. N., Aadil, R. M., Bhat, Z., Ueland, Ø. 2022. The fourth industrial revolution in the food industry-part II: Emerging food trends. Critical Reviews in Food Science and Nutrition, 00, 1-31. https://doi.org/10.1080/10408398.2022.2106472
  40. Herrero, M., Thornton, P. K., Mason-D'Croz, D., Palmer, J., Benton, T. G., Bodirsky, B. L., Bogard, J. R., Hall, A., Lee, B., Nyborg, K., Pradhan, P., Bonnett, G. D., Bryan, B. A., Campbell, B. M., Christensen, S., Clark, M., Cook, M. T., de Boer, I. J. M., Downs, C., ... West, P. C. 2020. Innovation can accelerate the transition towards a sustainable food system. Nature Food, 15, 266-272. https://doi.org/10.1038/s43016-020-0074-1
  41. Hettiarachchi, B. D., Seuring, S., Brandenburg, M. 2022. Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis. Operations Management Research. https://doi.org/10.1007/s12063-022-00275-7
  42. Hopkins, J., Hawking, P. 2018. Big Data Analytics and IoT in logistics: a case study. International Journal of Logistics Management, 292, 575-591. https://doi.org/10.1108/IJLM-05-2017-0109
  43. Hosseinzadeh-Bandbafha, H., Safarzadeh, D., Ahmadi, E., Nabavi-Pelesaraei, A. 2018. Optimization of energy consumption of dairy farms using data envelopment analysis - A case study: Qazvin city of Iran. Journal of the Saudi Society of Agricultural Sciences, 173, 217-228. https://doi.org/10.1016/j.jssas.2016.04.006
  44. Jachimczyk, B., Tkaczyk, R., Piotrowski, T., Johansson, S., Kulesza, W. J. 2021. IoT-based dairy supply chain - An ontological approach. Elektronika Ir Elektrotechnika, 271, 71-83. https://doi.org/10.5755/j02.eie.27612
  45. Jamwal, A., Agrawal, R., Sharma, M., Dangayach, G. S., Gupta, S. 2021. Application of optimization techniques in metal cutting operations: A bibliometric analysis. Materials Today: Proceedings, 38, 365-370. https://doi.org/https://doi.org/10.1016/j.matpr.2020.07.425
  46. Jamwal, A., Agrawal, R., Sharma, M., Giallanza, A. 2021. Industry 4.0 technologies for manufacturing sustainability: A systematic review and future research directions. Applied Sciences Switzerland, 1112. https://doi.org/10.3390/app11125725
  47. Jamwal, A., Agrawal, R., Sharma, M., Kumar, A., Kumar, V., Garza-Reyes, J. A. A. 2022. Machine learning applications for sustainable manufacturing: a bibliometric-based review for future research. Journal of Enterprise Information Management, 352, 566-596. https://doi.org/10.1108/JEIM-09-2020-0361
  48. Jayarathna, C. P., Agdas, D., Dawes, L., Yigitcanlar, T. 2021. Multi-objective optimization for sustainable supply chain and logistics: A review. In Sustainability Switzerland Vol. 13, Issue 24. MDPI. https://doi.org/10.3390/su132413617
  49. Ji, B., Banhazi, T., Phillips, C. J. C., Wang, C., Li, B. 2022. A machine learning framework to predict the next month's daily milk yield, milk composition and milking frequency for cows in a robotic dairy farm. Biosystems Engineering, 216, 186-197. https://doi.org/10.1016/j.biosystemseng.2022.02.013
  50. Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F. X. 2017. A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143January, 23-37. https://doi.org/10.1016/j.compag.2017.09.037
  51. Kasten, J. 2019. Blockchain Application: The Dairy Supply Chain. Journal of Supply Chain Management Systems, 81, 45-54. http://publishingindia.com/jscms/
  52. Kayikci, Y., Subramanian, N., Dora, M., Bhatia, M. S. 2022. Food supply chain in the era of Industry 4.0: blockchain technology implementation opportunities and impediments from the perspective of people, process, performance, and technology. Production Planning and Control, 332-3, 301-321. https://doi.org/10.1080/09537287.2020.1810757
  53. Kebreab, E., Reed, K. F., Cabrera, V. E., Vadas, P. A., Thoma, G., Tricarico, J. M. 2019. A new modeling environment for integrated dairy system management. Animal Frontiers, 92, 25-32. https://doi.org/10.1093/af/vfz004
  54. Khademi, H. 2018. A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: A case study in dairy industry. Journal of Industrial and Systems Engineering, 114, 190-203.
  55. Khan, S., Kaushik, M. K., Kumar, R., Khan, W. 2022. Investigating the barriers of blockchain technology integrated food supply chain: a BWM approach. Benchmarking. https://doi.org/10.1108/BIJ-08-2021-0489
  56. Khanal, A. R., Gillespie, J., MacDonald, J. 2010. Adoption of technology, management practices, and production systems in US milk production. Journal of Dairy Science, 9312, 6012-6022. https://doi.org/10.3168/jds.2010-3425
  57. Khanna, A., Jain, S., Burgio, A., Bolshev, V., Panchenko, V. 2022. Blockchain-Enabled Supply Chain platform for Indian Dairy Industry: Safety and Traceability. Foods, 1117. https://doi.org/10.3390/foods11172716
  58. Kher, S. v., Frewer, L. J., de Jonge, J., Wentholt, M., Davies, O. H., Luijckx, N. B. L., Cnossen, H. J. 2010. Experts' perspectives on the implementation of traceability in Europe. British Food Journal, 1123, 261-274. https://doi.org/10.1108/00070701011029138
  59. King, T., Cole, M., Farber, J. M., Eisenbrand, G., Zabaras, D., Fox, E. M., Hill, J. P. 2017. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science and Technology, 68, 160-175. https://doi.org/10.1016/j.tifs.2017.08.014
  60. Koh, L., Orzes, G., Jia, F. 2019. The fourth industrial revolution Industry 4.0: technologies disruption on operations and supply chain management. International Journal of Operations and Production Management, 396, 817-828. https://doi.org/10.1108/IJOPM-08-2019-788
  61. Kumar, L. B., Kumar, V. R. 2020. Blockchain-based Traceability in Dairy Supply Chain Management: A Literature Review. International Journal of Science Technology and Management, 93.
  62. Lee, T. R. Jiun S., Hsu, M. C., Dadura, A. M., Ganesh, K. 2013. TRIZ application in marketing model to solve operational problems for Taiwanese aquatic products with food traceability systems. Benchmarking, 205, 625-646. https://doi.org/10.1108/BIJ-01-2012-0001
  63. León-Bravo, V., Ciccullo, F., Caniato, F. 2022. Traceability for sustainability: seeking legitimacy in the coffee supply chain. British Food Journal, 1248, 2566-2590. https://doi.org/10.1108/BFJ-06-2021-0628
  64. Liao, Y., Deschamps, F., Loures, E. de F. R., Ramos, L. F. P. 2017. Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal. In International Journal of Production Research Vol. 55, Issue 12, pp. 3609-3629. Taylor and Francis Ltd. https://doi.org/10.1080/00207543.2017.1308576
  65. Liberati, P., Zappavigna, P. 2009. Improving the automated monitoring of dairy cows by integrating various data acquisition systems. Computers and Electronics in Agriculture, 681, 62-67. https://doi.org/10.1016/j.compag.2009.04.004
  66. Lioutas, E. D., Charatsari, C., de Rosa, M. 2021. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technology in Society, 67, 101744. https://doi.org/https://doi.org/10.1016/j.techsoc.2021.101744
  67. Lovarelli, D., Bacenetti, J., Guarino, M. 2020. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409
  68. Macciotta, N. P. P., Cappio-Borlino, A., Pulina, G. 2000. Time series autoregressive integrated moving average modeling of test-day milk yields of dairy ewes. Journal of Dairy Science, 835, 1094-1103. https://doi.org/10.3168/jds.S0022-03020074974-5
  69. Majumdar, A., Agrawal, R., Raut, R. D., Narkhede, B. E. 2022. Two years of COVID-19 pandemic: Understanding the role of knowledge-based supply chains towards resilience through bibliometric and network analyses. Operations Management Research. https://doi.org/10.1007/s12063-022-00328-x
  70. Maldonado-Siman, E., Godinez-Gonzalez, C. S., Cadena-Meneses, J. A., Ruíz-Flores, A., Aranda-Osorio, G. 2013. Traceability in the mexican dairy processing industry. Journal of Food Processing and Preservation, 375, 399-404. https://doi.org/10.1111/j.1745-4549.2011.00663.x
  71. Malik, M., Gahlawat, V. K., Mor, R. S., Dahiya, V., Yadav, M. 2022. Application of optimization techniques in the dairy supply chain: a systematic review. Logistics, 64, 74, https://doi.org/10.3390/logistics6040074
  72. Mania, I., Delgado, A. M., Barone, C., Parisi, S. 2018. Food Traceability System in Europe: Basic and Regulatory Requirements. In Traceability in the Dairy Industry in Europe pp. 3-14. Springer International Publishing. https://doi.org/10.1007/978-3-030-00446-0_1
  73. Manikas, I., Manos, B. 2009. Design of an integrated supply chain model for supporting traceability of dairy products. International Journal of Dairy Technology, 621, 126-138. https://doi.org/10.1111/j.1471-0307.2008.00444.x
  74. Maynard, A. D. 2015. Navigating the fourth industrial revolution. Nature Nanotechnology, 1012, 1005-1006. https://doi.org/10.1038/nnano.2015.286
  75. Michie, C., Andonovic, I., Davison, C., Hamilton, A., Tachtatzis, C., Jonsson, N., Duthie, C. A., Bowen, J., Gilroy, M. 2020. The Internet of Things enhancing animal welfare and farm operational efficiency. Journal of Dairy Research, 87S1, 20-27. https://doi.org/10.1017/S0022029920000680
  76. Mor, R. S., Bhardwaj, A., Singh, S., Khan, S. A. R. (2021). Modelling the distribution performance in dairy industry: A predictive analysis. LogForum: Scientific Journal of Logistics, 17(3), 425-440, https://doi.org/10.17270/J.LOG.2021.609
  77. Mor, R. S., Bhardwaj, A., Singh, S. 2018a. A structured-literature-review of the supply chain practices in Dairy industry. Journal of Operations and Supply Chain Management, 111, 14-25, https://dx.doi.org/10.12660/joscmv11n1p14-25
  78. Mor, R. S., Bhardwaj, A., Singh, S. 2018b. Benchmarking the interactions among barriers in Dairy supply chain: An ISM approach. International Journal for Quality Research, 122, 385-404, https://doi.org/10.18421/IJQR12.02-06
  79. Morota, G., Ventura, R. v., Silva, F. F., Koyama, M., Fernando, S. C. 2018. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. Journal of Animal Science, 964, 1540-1550. https://doi.org/10.1093/jas/sky014
  80. Newton, J. E., Nettle, R., Pryce, J. E. 2020. Farming smarter with big data: Insights from the case of Australia's national dairy herd milk recording scheme. Agricultural Systems, 181March, 102811. https://doi.org/10.1016/j.agsy.2020.102811
  81. Niya, S. R., Dordevic, D., Hurschler, M., Grossenbacher, S., Stiller, B. 2021. A Blockchain-based Supply Chain Tracing for the Swiss Dairy Use Case. 2020 2nd International Conference on Societal Automation SA, 1-8. https://doi.org/10.1109/SA51175.2021.9507182
  82. Olsen, T. L., Tomlin, B. 2020. Industry 4.0: Opportunities and challenges for operations management. Manufacturing and Service Operations Management, 221, 113-122. https://doi.org/10.1287/msom.2019.0796
  83. Pal, A., Kant, K. 2019. Internet of Perishable Logistics: Building Smart Fresh Food Supply Chain Networks. IEEE Access, 7, 17675-17695. https://doi.org/10.1109/ACCESS.2019.2894126
  84. Rebelo, R. M. L., Pereira, S. C. F., Queiroz, M. M. 2022. The interplay between the Internet of things and supply chain management: challenges and opportunities based on a systematic literature review. In Benchmarking Vol. 29, Issue 2, pp. 683-711. Emerald Group Holdings Ltd. https://doi.org/10.1108/BIJ-02-2021-0085
  85. Remondino, M., Zanin, A. 2022. Logistics and Agri-Food: Digitization to Increase Competitive Advantage and Sustainability. Literature Review and the Case of Italy. Sustainability Switzerland, 142. https://doi.org/10.3390/su14020787
  86. Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., Hogeveen, H. 2013. Invited review: Sensors to support health management on dairy farms. Journal of Dairy Science, 964, 1928-1952. https://doi.org/10.3168/jds.2012-6107
  87. Sadeghi, K., Kim, J., Seo, J. 2022. Packaging 4.0: The threshold of an intelligent approach. Comprehensive Reviews in Food Science and Food Safety, 213, 2615-2638. https://doi.org/https://doi.org/10.1111/1541-4337.12932
  88. Satya, V. N., Chimakurthi, S. 2017. Implementation of Artificial Intelligence Policy in the Field of Livestock and Dairy Farm. American Journal of Trade and Policy, 63, 113-118.
  89. Schulze, C., Spilke, J., Lehner, W. 2007. Data modeling for Precision Dairy Farming within the competitive field of operational and analytical tasks. Computers and Electronics in Agriculture, 591-2, 39-55. https://doi.org/10.1016/j.compag.2007.05.001
  90. Sefeedpari, P., Rafiee, S., Akram, A. 2013. Application of artificial neural network to model the energy output of dairy farms in Iran "Application of artificial neural network to model the energy output of dairy farms in Iran." In Int. J. Energy Technology and Policy Vol. 9, Issue 1.
  91. Sel, Ç., Bilgen, B., Bloemhof-Ruwaard, J. 2017. Planning and scheduling of the make-and-pack dairy production under lifetime uncertainty. Applied Mathematical Modelling, 51, 129-144. https://doi.org/10.1016/j.apm.2017.06.002
  92. Sharma, S., Gahlawat, V. K., Rahul, K., Mor, R. S., Malik, M. 2021. Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics, 54, 66. https://doi.org/10.3390/logistics5040066
  93. Sharma, Y. K., Mangla, S. K., Patil, P. P. 2019. Analyzing Challenges to Transportation for Successful Sustainable Food Supply Chain Management Implementation in Indian Dairy Industry. In Lecture Notes in Networks and Systems Vol. 40, pp. 409-418. Springer. https://doi.org/10.1007/978-981-13-0586-3_41
  94. Shine, P., Murphy, M. D. 2022. Over 20 years of machine learning applications on dairy farms: A comprehensive mapping study. In Sensors Vol. 22, Issue 1. MDPI. https://doi.org/10.3390/s22010052
  95. Shingh, S., Kamalvanshi, V., Ghimire, S., Basyal, S. 2020. Dairy Supply Chain System Based on Blockchain Technology. Asian Journal of Economics, Business and Accounting, 13-19. https://doi.org/10.9734/ajeba/2020/v14i230189
  96. Shokri Dariyan, F., Eslami, A., Aghayani, E., Pourakbar, M., Oghazyan, A. 2020. Comparison of artificial neural network and multi-kinetic models to predict optimum retention time for dairy wastewater treatment in the integrated fixed-film activated sludge. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1785442
  97. Siddharth, D., Saini, D. K., Kumar, A. 2021. Precision Agriculture With Technologies for Smart Farming Towards Agriculture 5.0. In Unmanned Aerial Vehicles for Internet of Things IoT pp. 247-276. https://doi.org/https://doi.org/10.1002/9781119769170.ch14
  98. Srivastava, A., Dashora, K. 2022. Application of blockchain technology for agrifood supply chain management: a systematic literature review on benefits and challenges. In Benchmarking. Emerald Group Ltd. https://doi.org/10.1108/BIJ-08-2021-0495
  99. St-Pierre, N. R., Jones, L. R. 2001. Forecasting herd structure and milk production for production risk management. Journal of Dairy Science, 848, 1805-1813. https://doi.org/10.3168/jds.S0022-03020174619-X
  100. Tan, A., Ngan, P. T. 2020. A proposed framework model for dairy supply chain traceability. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100034
  101. Taneja, M., Byabazaire, J., Jalodia, N., Davy, A., Olariu, C., Malone, P. 2020. Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle. Computers and Electronics in Agriculture, 171. https://doi.org/10.1016/j.compag.2020.105286
  102. Varavallo, G., Caragnano, G., Bertone, F., Vernetti-Prot, L., Terzo, O. 2022. Traceability Platform Based on Green Blockchain: An Application Case Study in Dairy Supply Chain. Sustainability Switzerland, 146. https://doi.org/10.3390/su14063321
  103. Warner, D., Vasseur, E., Lefebvre, D. M., Lacroix, R. 2020. A machine learning based decision aid for lameness in dairy herds using farm-based records. Computers and Electronics in Agriculture, 169. https://doi.org/10.1016/j.compag.2019.105193
  104. Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M. J. 2017. Big Data in Smart Farming - A review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
  105. Xu, L. da, Xu, E. L., Li, L. 2018. Industry 4.0: State of the art and future trends. International Journal of Production Research, 568, 2941-2962. https://doi.org/10.1080/00207543.2018.1444806
  106. Yi, Y., Bremer, P., Mather, D., Mirosa, M. 2022. Factors affecting the diffusion of traceability practices in an imported fresh produce supply chain in China. British Food Journal, 1244, 1350-1364. https://doi.org/10.1108/BFJ-03-2021-0227
  107. Zafarzadeh, M., Wiktorsson, M., Baalsrud Hauge, J. 2021. A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective. Logistics, 52, 24. https://doi.org/10.3390/logistics5020024
  108. Zheng, T., Ardolino, M., Bacchetti, A., Perona, M. 2021. The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review. In International Journal of Production Research Vol. 59, Issue 6, pp. 1922-1954. Taylor and Francis Ltd. https://doi.org/10.1080/00207543.2020.1824085
  109. Zhou, Q., Zhang, H., Wang, S. 2022. Artificial intelligence, big data, and blockchain in food safety. In International Journal of Food Engineering Vol. 18, Issue 1, pp. 1-14. De Gruyter Open Ltd. https://doi.org/10.1515/ijfe-2021-0299
Cytowane przez
Pokaż
ISSN
1895-2038
Język
eng
URI / DOI
http://dx.doi.org/10.17270/J.LOG.2023.869
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu