BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Król Michał (Kraków University of Economics), Gomola Anna (Kraków University of Economics)
Tytuł
How to Reduce Low-Stack Emissions? An Assessment of the Willingness of Residents of Single-Family Houses to Replace Fossil Fuel Heating Systems
Źródło
Journal of Public Governance, 2022, nr 2 (60), s. 48-63, tab., rys., bibliogr. 42 poz.
Słowa kluczowe
Ciepłownictwo, Preferencje, Analiza danych
Heating, Preferences, Data analysis
Uwagi
Klasyfikacja JEL: Q42, Q56, R11
summ.
Publikacja została sfinansowana z dotacji przyznanej Uniwersytetowi Ekonomicznemu w Krakowie Projekt nr 047/GAG/2022/POT.
Abstrakt
Objective: The objective of this study is to determine whether occupants of single-family houses in Poland, where low-stack emissions have a particularly negative impact on air quality, are willing to replace their current fossil fuel heating systems. To that end, four research hypotheses were formulated: 1. The majority of households using solid fuel boilers are considering switching to another heat source; 2. Their willingness to replace solid fuel boilers is affected by several statistically significant factors; 3. The main impediment to replacing the heat source is its cost; and 4. The anticipated amount of subsidy is critical in deciding whether or not to purchase a new heat source.
Research Design & Methods: This research was considered in the context of data from a CATI survey conducted in July and August 2021 among a representative sample of occupants of single-family houses in Poland. A total of 1007 responses were collected, of which 432 were considered in the subsequent analysis. A literature review, questionnaire results analysis, and a logit regression model were used to verify the hypotheses.
Findings: 1. Nearly 80% of the respondents would like to replace their heat source, but only 20% are considering ecological heat pumps; 2. People with more knowledge about renewable sources, who are more concerned about the environment and live in older houses, are more likely to replace their heat sources; 3. The high cost of purchasing a new appliance, low subsidies or lack thereof, and the fear of rising bills are the main factors slowing the transition; 4. Higher subsidies increase the number of people willing to replace their heat sources, with the median expecting at least a 50% replacement subsidy regardless of the price of the appliance.
Implications/Recommendations: The results of the study can be used by decision-makers when formulating and adapting support programmes for people replacing old and inefficient solid fuel boilers.
Contribution/ Value Added: The research results indicate the issues that have not been formulated in the literature so far, regarding the factors determining the willingness to replace old fossil fuel boilers. The added value of this article is the indication of statistically-significant variables such as the age of the house, knowledge about renewable energy, and attitude to the environment, which affect the willingness to replace. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Adamczyk, J., Piwowar, A., and Dzikuć, M. (2017). Air protection programmes in Poland in the context of the low emission. Environmental Science and Pollution Research, 24(19), 16316-16327. https://doi.org/10.1007/s11356-017-9233-9
  2. Adamkiewicz, Ł., Cygan, M., & Mucha, D. (2021). DROGA DO CZYSTEGO POWIETRZA OCENA DZIAŁAŃ ANTYSMOGOWYCH W POLSCE I REKOMENDACJE NA PRZYSZŁOŚĆ: NISKA EMISJA, TRANSPORT, PRZEMYSŁ. Polski Alarm Smogowy.
  3. Adamkiewicz, Ł., Kryza, M., Mucha, D., Werner, M., Gayer, A., Drzeniecka-Osiadacz, A., & Sawiński, T. (2021). Estimating Health Impacts Due to the Reduction of Particulate Air Pollution from the Household Sector Expected under Various Scenarios. Applied Sciences, 11(1), 272. https://doi.org/10.3390/app11010272
  4. Adamkiewicz, Ł., & Matyasik, N. (2019). Smog w Polsce i jego konsekwencje.
  5. Białynicki-Birula, P., Makieła, K., & Mamica, Ł. (2022). Energy Literacy and Its Determinants among Students within the Context of Public Intervention in Poland. Energies, 15(15), 5368. https://doi.org/10.3390/en15155368
  6. Blazy, R., Błachut, J., Ciepiela, A., Łabuz, R., & Papież, R. (2021). Thermal Modernization Cost and the Potential Ecological Effect-Scenario Analysis for Thermal Modernization in Southern Poland. Energies, 14(8), 2033. https://doi.org/10.3390/en14082033
  7. Brier, G. W. (1950). Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review, 78(1), 1-3. https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
  8. Bursac, Z., Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008). Purposeful selection of variables in logistic regression. Source Code for Biology and Medicine, 3, 17. https://doi.org/10.1186/1751-0473-3-17
  9. CBOS (2019). Polacy o smogu (Poles about smog) (Nr 33). Centrum Badania Opinii Społecznej. https://www.cbos.pl/PL/publikacje/raporty.php
  10. CBOS (2021). Smog i jak sobie z nim radzić (Smog and how to deal with it) (Nr 41). Centrum Badania Opinii Społecznej. https://www.cbos.pl/PL/publikacje/raporty.php
  11. Dąbrowski, K. M. (2022). Impact of fossil fuel usage reduction policy on PM2.5 level changes in a Lesser Poland Area. Sustainable Cities and Society, 85, 104036. https://doi.org/10.1016/j.scs.2022.104036
  12. Dong, K., & Zeng, X. (2018). Public willingness to pay for urban smog mitigation and its determinants: A case study of Beijing, China. Atmospheric Environment, 173, 355-363. https://doi.org/10.1016/j.atmosenv.2017.11.032
  13. EEA (2019). Air Quality in Europe - 2019 Report. Luxembourg. Publications Office of the European Union.
  14. EEA (2021). European city air quality viewer. European Environment Agency. https://www.eea.europa.eu/themes/air/urban-air-quality/european-city-air-quality-viewer
  15. Flaga-Maryańczyk, A., & Baran-Gurgul, K. (2022). The Impact of Local Anti-Smog Resolution in Cracow (Poland) on the Concentrations of PM10 and BaP Based on the Results of Measurements of the State Environmental Monitoring. Energies, 15(1), 56. https://doi.org/10.3390/en15010056
  16. Frankowski, J., & Tirado Herrero, S. (2021). "What is in it for me?" A people-centered account of household energy transition co-benefits in Poland. Energy Research and Social Science, 71, 101787. https://doi.org/10.1016/j.erss.2020.101787
  17. Greene, W. H. (2003). Econometric analysis. Pearson Education India.
  18. GUNB (2022). Statystyki. Główny Urząd Nadzoru Budowlanego. https://www.gunb.gov.pl/strona/statystyki
  19. Guo, D., Wang, A., & Zhang, A. T. (2020). Pollution exposure and willingness to pay for clean air in urban China. Journal of Environmental Management, 261, 110174. https://doi.org/10.1016/j.jenvman.2020.110174
  20. Hojnik, J., Ruzzier, M., Fabri, S., & Klopčič, A. L. (2021). What you give is what you get: Willingness to pay for green energy. Renewable Energy, 174, 733-746.
  21. IQAir. (2022). Air quality in Poland: Air quality index (AQI) and PM2.5 air pollution in Poland. https://www.iqair.com/poland
  22. Kaźmierska-Patrzyczna, A. (2022). Realizacja uprawnień sejmiku województwa w zakresie ochrony jakości powietrza, związanych z przyjmowaniem uchwał antysmogowych. Studia Prawnoustrojowe. Advance online publication. https://doi.org/10.31648/sp.7982
  23. Kowalska, F. (2020). Zanieczyszczenie powietrza istotnym zagrożeniem dla zdrowia mieszkańców polskich miast. Refleksje. Pismo Naukowe Studentów I Doktorantów WNPiD UAM(21), 71-84. https://doi.org/10.14746/r.2020.1.6
  24. Kowalska-Pyzalska, A. (2019). Do Consumers Want to Pay for Green Electricity? A Case Study from Poland. Sustainability, 11(5), 1310. https://doi.org/10.3390/su11051310
  25. Łukaszczyk, Z. (2018). Coal Yes, Smog Not - Awareness and Responsibility. Systems Supporting Production Engineering(7(1) Górnictwo - perspektywy i zagrożenia. Węgiel - tania czysta energia i miejsca pracy), 484-496.
  26. Mamica, Ł. (2021). Willingness to pay for the renewable energy sources of the residents of Kraków and their perception of the actions aimed at reducing the level of environmental pollution. Polityka Energetyczna - Energy Policy Journal, 24, 117-135. https://doi.org/10.33223/epj/135830
  27. Mamica, Ł. (Ed.). (2022). Koszty ogrzewania domów jednorodzinnych według źródeł ciepła - ekonomiczne i środowiskowe korzyści termomodernizacji.
  28. Ministry of Climate and Environment (2021). Polityka Energetyczna Polski do 2040 r., Streszczenie (Polish energy policy until 2040, abstract).
  29. Pietras-Szewczyk, M. (2021). The Potential to Reduce Pollutant Emissions from Individual Household Sector by Involving Citizens as Project Stockholders. European Journal of Sustainable Development, 10(1), 257. https://doi.org/10.14207/ejsd.2021.v10n1p257
  30. Polish Smog Alert (2022). Uchwały antysmogowe (Anti-smog resolutions). Polski Alarm Smogowy. https://polskialarmsmogowy.pl/jak-wygrac-ze-smogiem/uchwaly-antysmogowe/
  31. Pytliński, Ł. (2016). Stan techniczny budynków jednorodzinnych w województwie Małopolskim - źródła ogrzewania i standardy izolacyjności cieplnej, Raport z badań. Kraków. Krakowski Alarm Smogowy.
  32. Pytliński, Ł., Dworkowska, A., & Guła, A. (2021). Domy jednorodzinne w Polsce. Źródła grzewcze, stan energetyczny, priorytety inwestycyjne (Single-family houses in Poland. Heat sources, energy condition, investment priorities). Krakowski Alarm Smogowy.
  33. Rataj, M., & Holewa-Rataj, J. (2020). Analiza zmian jakości powietrza Małopolski w latach 2012-2020. Nafta-Gaz, 76(11), 854. https://doi.org/10.18668/NG.2020.11.11
  34. Stala-Szlugaj, K. (2018). Uchwały antysmogowe w Polsce a ich oddziaływanie na zużycie węgla kamiennego w gospodarstwach domowych. Journal of the Polish Mineral Engineering Society, JULY - DECEMBER. https://doi.org/10.29227/IM-2018-02-21
  35. Traczyk, P., & Gruszecka-Kosowska, A. (2020). The Condition of Air Pollution in Kraków, Poland, in 2005-2020, with Health Risk Assessment. International Journal of Environmental Research and Public Health, 17(17). https://doi.org/10.3390/ijerph17176063
  36. WHO (2022a). Air pollution. World Health Organization. https://www.who.int/health-topics/air-pol-lution#tab=tab_2
  37. WHO (2022b). New WHO air quality guidelines will save lives. https://www.iqair.com/newsroom/2021a-WHO-air-quality-guidelines
  38. Wierzbińska, M., & Adamus, A. (2020). Impact of the type of fuel burned and the heating device on the qual-ity of atmospheric air. Inżynieria Ekologiczna, 21(1), 17-25. https://doi.org/10.12912/23920629/120380
  39. Wietrzny, K., & Dworakowska, A. (2019). Kontrola jakości węgla: Ocena wdrożenia nowych przepisów kontroli jakości węgla. Kraków. Polski Alarm Smogowy.
  40. Zaborowski, M., & Walczak, E. (2018). Energy Efficiency in Poland 2017 Review (ISBN: 978-83-89230-52-2). Kraków. Institute of Environmental Economics. www.iee.org.pl
  41. Zieliński, E., Wielgus, A., Dreliszak, J., & Zukow, W. (2018). Air pollution - selected health effects in Poland. Advance online publication. https://doi.org/10.5281/zenodo.2527086
  42. Zorić, J., & Hrovatin, N. (2012). Household willingness to pay for green electricity in Slovenia. Energy Policy, 47, 180-187. https://doi.org/10.1016/j.enpol.2012.04.055
Cytowane przez
Pokaż
ISSN
1898-3529
Język
eng
URI / DOI
http://dx.doi.org/10.15678/PG.2022.60.2.04
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu