BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Skórnóg Damian (Silesian University of Technology, Gliwice, Poland), Kmiecik Mariusz (Silesian University of Technology, Gliwice, Poland)
Tytuł
Supporting the Inventory Management in the Manufacturing Company by Chatgpt
Źródło
LogForum, 2023, vol. 19, nr 4, s. 535-554, rys., tab., wykr., bibliogr. 92 poz.
Słowa kluczowe
Prognozowanie, Zarządzanie zapasami, Modele ARIMA
Forecasting, Inventory management, Autoregressive integrated moving average (ARIMA) models
Uwagi
summ.
Abstrakt
Background: The decision-making process in the operational context of enterprises is an integral aspect of how they function, and in this area, precise demand forecasting plays a key role. The use of accurate forecasting models not only meets customer expectations but also enables efficient resource allocation and operational cost optimization. In the long term, such actions contribute to increasing the organization's competitiveness in the market. In recent years, there has been a growing trend in the use of advanced analytical technologies, including machine learning, for demand forecasting purposes. This scientific paper focuses on a comparative analysis of demand forecasting effectiveness using the generative language model GPT in relation to the auto ARIMA algorithm. Methods: A case study analysis for a selected manufacturing organization was conducted based on twelve diversified operational references, for which the supply chain mechanisms are heterogeneous. In the research process, a classification into four reference groups was established, based on the time required to complete the ordering process. Forecast generation was carried out using the auto.arima() algorithm in the R programming environment, as well as through the ChatGPT language model versions 3-5. The forecast results were subjected to comparative analysis, in which weighting was applied for different forecast accuracy indicators, including the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the number of precisely predicted daily forecasts. Results: The study showed that ChatGPT is more reliable in forecasting compared to ARIMA. However, integrating ChatGPT into the existing systems in the company can be problematic, mainly due to limitations in data operations. Despite this, ChatGPT has the potential to improve the accuracy of inventory management plans both in the short and long term. Conclusions: The comparative analysis of the effectiveness of forecasting models, including ChatGPT and ARIMA, showed that the ChatGPT algorithm achieves higher levels of forecasting accuracy. This is observed despite increased computational complexity and challenges associated with processing large data sets(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Abdolazimi, O.; Esfandarani, M.S.; Shishebori, D. (2021). Design of a supply chain network for determining the optimal number of items at the inventory groups based on ABC analysis: A comparison of exact and meta-heuristic methods. Neural Comput. Appl., 33, 6641-6656. https://www.doi.org/10.1007/s00521-020- 05428-y
  2. Abhishek G V S., Adari K., Varma A. G V N. (2023) Predictive Insights for Monthly Property Sales Forecasting: An End-toEnd Time Series Forecasting. International Journal of Advanced Research in Science Communication and Technology. 3. https://www.doi.org/10.48175/IJARSCT12493
  3. Ahmed, N. K., Atiya, A. F., Gayar, N. E., & El-Shishiny, H. (2010). An empirical comparison of machine learning models for time series forecasting. Econometric reviews, 29(5-6), 594-621. https://www.doi.org/10.1080/07474938.2 010.481556
  4. Albayrak Ünal, Ö., Erkayman, B., & Usanmaz, B. (2023). Applications of Artificial Intelligence in Inventory Management: A Systematic Review of the Literature. Archives of Computational Methods in Engineering, 1-21. https://www.doi.org/10.1007/s11831-022- 09879-5
  5. Ali, F., Zhang, Q., Tauni, M. Z., & Shahzad, K. (2023). Social Chatbot: My Friend in My Distress. International Journal of Human-Computer Interaction, 1-11. https://www.doi.org/10.1080/10447318.2 022.2150745
  6. Al-Qaness, M. A., Saba, A. I., Elsheikh, A. H., Abd Elaziz, M., Ibrahim, R. A., Lu, S., ... & Ewees, A. A. (2021). Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil. Process Safety and Environmental Protection, 149, 399-409. https://www.doi.org/10.1016/j.psep.2020. 11.007
  7. Anderson, G. E. (2012). The Janus factor: trend follower's guide to market dialectics (Vol. 155). John Wiley & Sons. Angelov, S., & Lazarova, M. (2019). Ecommerce distributed chatbot system. In Proceedings of the 9th Balkan Conference on Informatics (pp. 1-8), https://www.doi.org/10.1145/3351556.33 51587
  8. Bartkowiak, P., & Rutkowski, I. P. (2016). The role of information in product innovation process and assortment management. LogForum, 12(2). https://www.doi.org/10.17270/J.LOG.201 6.2.1
  9. Biswas, S. S. (2023). Potential use of chat gpt in global warming. Annals of biomedical engineering, 51(6), 1126-1127. https://www.doi.org/10.1007/s10439-023- 03171-8
  10. Biwas SS. (2023). Role of ChatGPT in radiology with a focus on pediatric radiology: proof by examples. Pediatr Radiol. https://www.doi.org/10.1007/s00247-023- 05675-w
  11. Boone, T., Boylan, J. E., Fildes, R., Ganeshan, R., & Sanders, N. (2019). Perspectives on supply chain forecasting. International Journal of Forecasting, 35(1), 121-127. https://www.doi.org/10.1016/j.ijforecast.2 018.11.002
  12. Botchkarev A. (2018). Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties and Typology. https://www.doi.org/10.28945/4184
  13. Bowas SS. (2023). Role of Chat GPT in Public Health. Annals of Biomedical Engineering 51, 868-869. https://www.doi.org/10.1007/s10439-023- 03172-7
  14. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons. https://www.doi.org/10.1111/jtsa.12194
  15. Božić V. (2023). Chat GPT and education. General hospital Koprivnica. https://www.doi.org/10.13140/RG.2.2.188 37.40168
  16. Chai T. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?- Arguments against avoiding RMSE in the literature. Geoscientific Model Development. https://www.doi.org/10.5194/gmd-7- 1247-2014
  17. Chang, Y., Gao, Y., Zhu, D., & Safeer, A. A. (2023). Social robots: Partner or intruder in the home? The roles of self-construal, social support, and relationship intrusion in consumer preference. Technological Forecasting and Social Change, 197, 122914, https://www.doi.org/10.1016/j.techfore.20 23.122914
  18. Chen, E., Huang, R., Chen, H. S., Tseng, Y. H., & Li, L. Y. (2023). GPTutor: a ChatGPT-powered programming tool for code explanation. arXiv preprint arXiv:2305.01863. https://www.doi.org/10.48550/arXiv.2305 .01863
  19. Chenfei W., Shengming Y., Wizhen Q., Xiaodong W., Zecheng T., Nan D. (2023). Visual chatgpt: Talking, drawing, and editing with visual foundation models. arXiv preprint arXiv:2303.04671. https://www.doi.org/10.48550/arXiv.2303 .04671
  20. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination Rsquared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://www.doi.org/10.7717/peerj-cs.623
  21. Dantu, N. V., & Vasudevan, S. K. (2021). Real-Time Retail Smart Space Optimization and Personalized Store Assortment with Two-Stage Object Detection Using Faster Regional Convolutional Neural Network. In Advances in Computing and Network Communications: Proceedings of CoCoNet 2020, Volume 2 (pp. 397-408). Springer Singapore.
  22. Delke, V., Schiele, H., Buchholz, W., & Kelly, S. (2023). Implementing Industry 4.0 technologies: Future roles in purchasing and supply management. Technological Forecasting and Social Change, 196, 122847. https://www.doi.org/10.1016/j.techfore.20 23.122847
  23. Dillion, D., Tandon, N., Gu, Y., & Gray, K. (2023). Can AI language models replace human participants?. Trends in Cognitive Sciences. https://www.doi.org/10.1016/j.tics.2023.0 4.008
  24. Elsheikh, A. H., Saba, A. I., Panchal, H., Shanmugan, S., Alsaleh, N. A., & Ahmadein, M. (2021, November). Artificial intelligence for forecasting the prevalence of COVID-19 pandemic: An overview. In Healthcare (Vol. 9, No. 12, p. 1614). MDPI, https://www.doi.org/10.3390/healthcare91 21614
  25. Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10. https://www.doi.org/10.1177/1847979018 808673
  26. First M. (2023). How Chat GPT Can Transform Autodidactic Experiences and Open Education? OSF Preprints https://www.doi.org/10.31219/osf.io/9ge8 m
  27. George, A. S., & George, A. H. (2023). A review of ChatGPT AI's impact on several business sectors. Partners Universal International Innovation Journal, 1(1), 9- 23. https://www.doi.org/10.5281/zenodo.7644 359
  28. Grzelak M., Borucka A., Buczyński Z. (2019) Forecasting the demand for transport services on the example of a selected logistic operator. Arch. Transp., 52, 81-93. https://www.doi.org/10.5604/01.3001.001 4.0210
  29. Gupta, S., & Ramachandran, D. (2021). Emerging market retail: transitioning from a product-centric to a customer-centric approach. Journal of Retailing, 97(4), 597- 620. https://www.doi.org/10.1016/j.jretai.2021. 01.008
  30. Haque, M. U., Dharmadasa, I., Sworna, Z. T., Rajapakse, R. N., & Ahmad, H. (2022)."I think this is the most disruptive technology": Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. https://www.doi.org/10.37394/232010.20 23.20.9
  31. Hodson T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development 15(14):5481-5487. https://doi.org/10.5194/gmd-15-5481- 2022
  32. Hu, Z., Ge, Q., Li, S., Jin, L., & Xiong, M. (2020). Artificial intelligence forecasting of covid-19 in china. arXiv preprint arXiv:2002.07112. https://www.doi.org/10.48550/arXiv.2002 .07112
  33. Huynh, M.-T., Nippa, M., & Aichner, T. (2023). Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research. Technological Forecasting and Social Change, 197, 122884, https://www.doi.org/10.1016/j.techfore.20 23.122884
  34. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
  35. Jauhar, S. K., Jani, S. M., Kamble, S. S., Pratap, S., Belhadi, A., & Gupta, S. (2023). How to use no-code artificial intelligence to predict and minimize the inventory distortions for resilient supply chains. International Journal of Production Research, 1-25. https://www.doi.org/10.1080/00207543.2 023.2166139
  36. Jeżyk T., Tomczewski A. (2014). Short term forecasting of electricity consumption by using an artificial neural network. Computer Applications in Electrical Engineering 2014.
  37. Jinping L., Xiaoqiang W., Yongming X., Zhaohui T., Yongfang X., Subo G., (2023) Small samples-oriented intrinsically explainable machine learning using Variational Bayesian Logistic Regression: An intensive care unit readmission prediction case for liver transplantation patients. Expert Systems with Applications. 235. https://www.doi.org/121138.10.1016/j.es wa.2023.121138
  38. Kabir, G., & Akhtar Hasin, M. A. (2013). Multi-criteria inventory classification through integration of fuzzy analytic hierarchy process and artificial neural network. International Journal of Industrial and Systems Engineering, 14(1), 74-103. https://www.doi.org/10.1504/IJISE.2013. 052922
  39. Kmiecik, M. (2022a). Conception of logistics coordination in the distribution networks. Logistics Research, 15(1). https://www.doi.org/10.23773/2022_11
  40. Kmiecik, M. (2022b). Logistics coordination based on inventory management and transportation planning by third-party logistics (3PL). Sustainability, 14(13), 8134. https://www.doi.org/10.3390/su14138134
  41. Kolosok, V., & Lazarevska, Y. (2020). Efficiency of digital communications in the logistics business: evaluation indicators. Intellectualization of logistics and Supply Chain Management, (2), 78-87, https://www.doi.org/10.46783/smartscm/2020-2-6
  42. Kramarz, M., & Kmiecik, M. (2022). Quality of Forecasts as the Factor Determining the Coordination of Logistics Processes by Logistic Operator. Sustainability, 14(2), 1013, https://www.doi.org/10.3390/su14021013
  43. Lee, W. Y., Goodwin, P., Fildes, R., Nikolopoulos, K., & Lawrence, M. (2007). Providing support for the use of analogies in demand forecasting tasks. International Journal of Forecasting, 23(3), 377-390. https://www.doi.org/10.1016/j.ijforecast.2 007.02.006
  44. Lopez-Lira, A., & Tang, Y. (2023). Can chatgpt forecast stock price movements? Return predictability and large language models. arXiv preprint arXiv:2304.07619. https://doi.org/10.48550/arXiv.2304.0761 9
  45. Lu, H. P., Cheng, H. L., Tzou, J. C., & Chen, C. S. (2023). Technology roadmap of AI applications in the retail industry. Technological Forecasting and Social Change, 195, 122778, https://www.doi.org/10.1016/j.techfore.20 23.122778
  46. Maciejowska, K., Nowotarski, J., & Weron, R. (2016). Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging. International Journal of Forecasting, 32(3), 957-965, https://www.doi.org/10.1016/j.ijforecast.2 014.12.004
  47. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PloS one, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194 889
  48. Malik, N., Kar, A. K., Tripathi, S. N., & Gupta, S. (2023). Exploring the impact of fairness of social bots on user experience. Technological Forecasting and Social Change, 197, 122913, https://www.doi.org/10.1016/j.techfore.20 23.122913
  49. Malik, S.; Jeswani, R. (2018). Literature review and techniques of machine learning algorithm used in business intelligence for inventory management. Int. J. Eng. Sci. Res. Technol., 7, 230-241. https://www.doi.org/10.5281/zenodo.1135 987
  50. Masood, A., & Ahmad, K. (2021). A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. Journal of Cleaner Production, 322, 129072, https://www.doi.org/10.1016/j.jclepro.202 1.129072
  51. Merdin, D., & Ersöz, F. (2019). Evaluation of the applicability of Industry 4.0 processes in businesses and supply chain applications. In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-10). IEEE, https://www.doi.org/10.1109/ISMSIT.201 9.8932830
  52. Mhlanga D. (2023). Open AI in Education, the Responsible and Ethical Use of ChatGPT Towards Lifelong Learning. College of Business and Economics, University of Hohannesburg, South Africa. https://www.doi.org/10.2139/ssrn.435442 2
  53. Modgil, S., Singh, R. K., & Hannibal, C. (2022). Artificial intelligence for supply chain resilience: learning from Covid-19. The International Journal of Logistics Management, 33(4), 1246-1268, https://www.doi.org/10.1108/IJLM-02- 2021-0094
  54. Mukhopadhyay, S., Solis, A. O., & Gutierrez, R. S. (2012). The accuracy of non- traditional versus traditional methods of forecasting lumpy demand. Journal of Forecasting, 31(8), 721-735. https://www.doi.org/10.1002/for.1242
  55. Murphy, P.R.; Wood, D.F. (2020). Nowoczesna Logistyka, Wydanie X; Helion: Gliwice, Poland.
  56. Nigar M. Shafiq Surameery, & Mohammed Y. Shakor. (2023). Use Chat GPT to Solve Programming Bugs. International Journal of Information Technology &Amp; Computer Engineering (IJITC) ISSN : 2455-5290, 3(01), 17-22. https://doi.org/10.55529/ijitc.31.17.22
  57. Ori R., Yoav L., Itay D., Dor M., Amnon S., Brown K., Yoav S. (2023). In-context retrieval-augmented language models. arXiv preprint arXiv:2302.00083. https://doi.org/10.48550/arXiv.2302.0008 3
  58. Ostertagova, E., & Ostertag, O. (2012). Forecasting using simple exponential smoothing method. Acta Electrotechnica et Informatica, 12(3), 62, https://www.doi.org/10.2478/v10198-012- 0034-2
  59. Oviedo-Trespalacios, O., Peden, A. E., Cole Hunter, T., Costantini, A., Haghani, M., Kelly, S., ... & Reniers, G. (2023). The risks of using chatgpt to obtain common safety-related information and advice. Available at SSRN 4346827. https://www.doi.org/10.2139/ssrn.434682 7
  60. Paam, P.; Berretta, R.; Heydar, M.; GarcíaFlores, R. (2019). The impact of inventory management on economic and environmental sustainability in the apple industry. Comput. Electron. Agric. 2019, 163, 104848 https://www.doi.org/10.1016/j.compag.20 19.06.003
  61. Patil, H.; Divekar, R. (2014). Inventory management challenges for B2C ecommerce retailers. Procedia Econ. Financ. 11,561-571. https://www.doi.org/10.1016/S2212- 5671(14)00221-4
  62. Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B., ... & Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705-871, https://www.doi.org/10.1016/j.ijforecast.2 021.11.001
  63. Phan, A. C., Nguyen, H. A., Trieu, P. D., Nguyen, H. T., & Matsui, Y. (2019). Impact of supply chain quality management practices on operational performance: empirical evidence from manufacturing companies in Vietnam. Supply Chain Management: An International Journal, 24(6), 855-871. https://www.doi.org/10.1108/SCM-12- 2018-0445
  64. Praveen, K. B., Kumar, P., Prateek, J., Pragathi, G., & Madhuri, J. (2020). Inventory management using machine learning. International Journal of Engineering Research & Technology (IJERT), 9(06), 866-869. https://www.doi.org/10.17577/IJERTV9I S060661
  65. Praveen, U., Farnaz, G., & Hatim, G. (2019). Inventory management and cost reduction of supply chain processes using AI based time-series forecasting and ANN modeling. Procedia Manufacturing, 38, 256-263. https://www.doi.org/10.1016/j.promfg.20 20.01.034
  66. Preil, D., & Krapp, M. (2022). Artificial intelligence-based inventory management: a Monte Carlo tree search approach. Annals of Operations Research, 1-25. https://www.doi.org/10.1007/s10479-021- 03935-2
  67. Rathore, B. (2023). Future of textile: Sustainable manufacturing & prediction via chatgpt. Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, 12(1), 52-62. https://www.doi.org/10.56614/eiprmj.v12i 1y23.253
  68. Rawat, B., Bist, A. S., Rahardja, U., Aini, Q., & Sanjaya, Y. P. A. (2022, September). Recent Deep Learning Based NLP Techniques for Chatbot Development: An Exhaustive Survey. In 2022 10th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-4). IEEE, https://www.doi.org/10.1109/CITSM5638 0.2022.9935858
  69. Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352- 1372, https://www.doi.org/10.1016/j.rser.2015.0 4.065
  70. Robeson S., Willmott C. (2023). Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS One. https://doi.org/10.1371/journal.pone.0279 774
  71. RongLi F., Hao Z. (2023) Prediction model of agricultural water quality based on optimized logistic regression algorithm. EURASIP J. Adv. Signal Process. 2023, 21. https://doi.org/10.1186/s13634-023- 00973-9
  72. Sai, B., Thanigaivelu, S., Shivaani, N., Babu, S., & Ramaa, A. (2022, December). Integration of Chatbots in the Procurement Stage of a Supply Chain. In 2022 6th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS) (pp. 1-5). IEEE, https://www.doi.org/10.1109/CSITSS574 37.2022.10026367
  73. Sharma R., Singhal P. (2019) Demand forecasting of engine oil for automotive and industrial lubricant manufacturing company using neural network. Materials Today: Proceedings, 18, 2308-2314. https://www.doi.org/10.1016/j.matpr.2019 .07.013
  74. Sharma, R., Shishodia, A., Gunasekaran, A., Min, H., & Munim, Z. H. (2022). The role of artificial intelligence in supply chain management: mapping the territory. International Journal of Production Research, 60(24), 7527-7550, https://www.doi.org/10.1080/00207543.2 022.2029611
  75. Shmueli, G., & Tafti, A. (2023). How to "improve" prediction using behavior modification. International Journal of Forecasting, 39(2), 541-555, https://www.doi.org/10.1016/j.ijforecast.2 022.07.008
  76. Shujian Z., Chengyue G., Lemeng W., Xingchao L., Mingyuan Z. (2023). AutoML-GPT :Automatic Machine Learning with GPT. The University of Texas at Austin. https://doi.org/10.48550/arXiv.2305.0249 9
  77. Sohrabpour, V., Oghazi, P., Toorajipour, R., & Nazarpour, A. (2021). Export sales forecasting using artificial intelligence. Technological Forecasting and Social Change, 163, 120480, https://www.doi.org/10.1016/j.jclepro.202 1.129072
  78. Suvethashri, R. P., & Vickram, A. (2019). A Study on The Impact of Technology and Recent Advances in Logistics Industry. Think India Journal, 22(21), 484-495.
  79. Swaminathan, K., & Venkitasubramony, R. (2023). Demand forecasting for fashion products: A systematic review. International Journal of Forecasting, https://www.doi.org/10.1016/j.ijforecast.2 023.02.005
  80. Tofallis C. (2013). Measuring Relative Accuracy: A Better Alternative to Mean Absolute Percentage Error. Hertfordshire Business School Working Paper. https://www.doi.org/10.2139/ssrn.235068 8
  81. Udhaya P. (2023). Improving the Reproducibility in Forecasting Research. International Journal of Research and Review. 10. 950-958. https://www.doi.org/10.52403/ijrr.202307 110
  82. Vela, D., Sharp, A., Zhang, R., Nguyen, T., Hoang, A., & Pianykh, O. S. (2022). Temporal quality degradation in AI models. Scientific Reports, 12(1), 11654 https://www.doi.org/10.1038/s41598-022- 15245-z
  83. Wang, Y.; Zhang, J.; Guan, X.; Xu, M.; Wang, Z.; Wang, H. (2021). Collaborative multiple centers fresh logistics distribution network optimization with resource sharing and temperature control constrains. Expert Syst. Appl., 165, 113838. https://www.doi.org/10.1016/j.eswa.2020. 113838
  84. Waßmuth, K., Köhler, C., Agatz, N., & Fleischmann, M. (2023). Demand management for attended home delivery-a literature review. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2023.01.056
  85. Wu, S. H., Chen, L. P., Yang, P. C., & Ku, T. (2018). Automatic dialogue template synthesis for chatbot by story information extraction. In 2018 IEEE International Conference on Information Reuse and Integration (IRI) (pp. 485-490). IEEE, https://www.doi.org/10.1109/IRI.2018.00 077
  86. Yangbo Y. (2023). Integrated forecasting model based on LSTM and TCN for short term power load forecasting. Advances in Engineering Technology Research. 6. 540. https://www.doi.org/10.56028/aetr.6.1.54 0.2023
  87. Yinan, Q., Tang, M., & Zhang, M. (2014). Mass customization in flat organization: The mediating role of supply chain planning and corporation coordination. Journal of applied research and technology, 12(2), 171-181, https://www.doi.org/10.1016/S1665- 6423(14)72333-8
  88. Yu, M. C. (2011). Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Systems with Applications, 38(4), 3416-3421. https://www.doi.org/10.1016/j.eswa.2010. 08.127
  89. Zhang, C., Tian, Y. X., & Fan, Z. P. (2022). Forecasting sales using online review and search engine data: A method based on PCA-DSFOA-BPNN. International Journal of Forecasting, 38(3), 1005-1024, https://www.doi.org/10.1016/j.ijforecast.2 021.07.010
  90. Zheng M., Su X., You S., Wang F., Qian C., Xu C., Albanie S. (2023). Can GPT-4 perform neutral architecture search? arXiv preprint arXiv:2304.10970. https://doi.org/10.48550/arXiv.2304.1097 0
  91. Zhou, L., Zhao, P., Wu, D., Cheng, C., & Huang, H. (2018). Time series model for forecasting the number of new admission inpatients. BMC medical informatics and decision making, 18, 1-11, https://www.doi.org/10.1186/s12911-018- 0616-8
  92. Žunić, E., Delalić, S., Hodžić, K., Beširević, A., & Hindija, H. (2018, November). Smart warehouse management system concept with implementation. In 2018 14th Symposium on Neural Networks and Applications (NEUREL) (pp. 1-5). IEEE. https://www.doi.org/10.1109/NEUREL.20 18.8587004
Cytowane przez
Pokaż
ISSN
1895-2038
Język
eng
URI / DOI
http://dx.doi.org/10.17270/J.LOG.2023.917
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu