- Autor
- Płońska Monika (WSB University, Dabrowa Gornicza, Poland), Kądzielawski Grzegorz (WSB University, Dabrowa Gornicza, Poland)
- Tytuł
- ESG Risk Management Supported by Artificial Intelligence Systems
- Źródło
- Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska, 2023, z. 172, s. 527-536, rys., bibliogr. 39 poz.
- Tytuł własny numeru
- Współczesne zarządzanie = Contemporary Management
- Słowa kluczowe
- Zarządzanie ryzykiem, Sztuczna inteligencja, Rozwój zrównoważony
Risk management, Artificial intelligence, Sustainable development - Uwagi
- summ.
- Abstrakt
-
Purpose: ESG risk management and adapting to decarbonization requirements are among the key challenges European industrial enterprises will face in the upcoming decade. Addressing this challenge will involve the significant role of new technologies, particularly artificial intelligence. This article discusses research aimed at evaluating the effectiveness of a system utilizing artificial intelligence for risk management in the process of managing ESG goals.
Design/methodology/approach: In order to achieve the intended goal, the following research questions were formulated: Does the implemented system support the realization of ESG objectives in the studied organization, and would these objectives be achieved without implementing an AI-supported ESG risk management system? The research was conducted in a petrochemical sector company using qualitative methods (systematic literature review, case study description, self-observation and participant observation, informal interviews with selected system users). Due to the qualitative nature of the research, according to the methodology, no research hypotheses were formulated. Both the purpose of the research and the content of the above-mentioned issues indicate that they fit into the functional-systemic paradigm.
Findings: The analysis of research results indicates that the ESG risk management system based on artificial intelligence algorithms contributes significantly to the realization of ESG objectives in the studied organization. Additionally, managing the ESG risk in the organization is possible without implementing a system supporting this process, however, the effectiveness of such actions is limited significantly.
Research limitations/implications: Limitations result from the adopted research method. The systematic literature review, despite following the procedure derived from management and quality sciences, may be incomplete. Cited studies were conducted in various organizations and cultures. The case study description does not apply to every organization. Furthermore, self-observation as a method may be burdened with subjectivity, resulting from, among other things, the researcher's experiences.
Practical implications: Among technologies with the highest potential for managing risks in the ESG area, particularly in the context of decarbonization, artificial intelligence undoubtedly stands out. AI has the most significant impact on the digitalization of the economy, the implementation of the 2030 Agenda, the Green Deal, and the Paris Agreement. AI integrates most of the Industry 5.0 technologies and has the most crucial impact on supporting the realization of climate goals - from monitoring trends, predicting weather events, to specific solutions reducing or completely eliminating greenhouse gas emissions.
Originality/value: The results of the conducted research demonstrate the significant potential of using artificial intelligence in managing ESG goals, especially in the implementation of decarbonization objectives and the digitalization of production processes in industrial enterprises. Additional value is the possibility of ensuring economic (cost reduction of processes), practical and reliable, high-quality production, as well as accelerating data analytics in the pursuit of identifying risks and achieving ESG goals.
(original abstract) - Pełny tekst
- Pokaż
- Bibliografia
- Aljarrah, A., Ababneh, M., Karagozlu, D., Ozdamli, F. (2021). Artificial Intelligence Techniques for Distance Education: A Systematic Literature Review. Tem Journal-Technology Education Management Informatics, 10(4), 1621-1629. doi: 10.18421/ TEM104-18.
- Babbie, E. (2009). Podstawy badań społecznych. Warszawa: PWN.
- Bassani, M.L., Osorio, R.S. (2017). A proteção ambiental como efeito indireto do sistema de gestão de energia ISO 50001. Revista de Direito Internacional, 14(3), 106-120. doi: 10.5102/rdi. v14i3.4977.
- Blazek, L. (2021). Management and Administration of Companies Under the Influence of Development Industry 4.0. Proceedings of the European Conference on Management, Leadership & Governance, 44-54. doi: 10.34190/MLG.21.088.
- Brem, A., Cusack, D.Ó., Adrita, M.M., O'Sullivan, D.T., Bruton, K. (2020). How do companies certified to ISO 50001 and ISO 14001 perform in LEED and BREEAM assessments? Energy Efficiency, 13(4), 751-766. doi: 10.1007/s12053-020-09864-6.
- Chuang, S., Graham, C.M. (2020). Contemporary Issues and Performance Improvement of Mature Workers in Industry 4.0. Performance Improvement, 59(6), 21-30. doi: 10.1002/pfi.21921.
- Ciesielska, M., Wolanik Boström, K., Öhlander, M. (2012). Obserwacja. In: D. Jemielniak (Ed.), Badania jakościowe. Metody i narzędzia. Warszawa: PWN.
- Creswell, J.W. (2013). Projektowanie badań naukowych. Metody jakościowe, ilościowe i mieszane. Kraków: Wydawnictwo UJ.
- Czapczuk, A., Dawidowicz, J., Piekarski, J. (2015). Metody sztucznej inteligencji w projektowaniu i eksploatacji systemów zaopatrzenia w wodę. Rocznik Ochrona Środowiska, 17, cz. 2, 1527-1544.
- Dźwigoł, H. (2018). Współczesne procesy badawcze w naukach o zarządzaniu. Uwarunkowania metodyczne i metodologiczne. Warszawa: PWN.
- Field, A. (2019). ISO 50001-A strategic guide to establishing an energy management system. IT Governance Ltd.
- Flick, U. (2012). Projektowanie badania jakościowego. Warszawa: PWN.
- Ghandour, A. (2021). Opportunities and Challenges of Artificial Intelligence in Banking: Systematic Literature Review. TEM Journal, 10(4), 1581-1587. doi: 10.18421/TEM104-12.
- Ginevičius, R., Bilan, Y., Kądzielawski, G., Novotny, M., Kośmider, T. (2021). Evaluation of the Sectoral Energy Development Intensity in the Euro Area Countries. Energies, 14(17), 5298. https://doi.org/10.3390/en14175298.
- Gupta, S., Modgil, S., Bhattacharyya, S., Bose, I. (2021). Artificial intelligence for decision support systems in the field of operations research: Review and future scope of research. Annals of Operations Research, 308(1/2), 215-274. doi: 10.1007/s10479-020-03856-6.
- https://www.ey.com/pl_pl/assurance/how-ai-will-enable-a-better-understanding-of-long-term-value.
- Jaiswal, A., Arun, C.J., Varma, A. (2022). Rebooting employees: upskilling for artificial intelligence in multinational corporations. International Journal of Human Resource Management, 33(6), 1179-1208. doi: 10.1080/09585192.2021.1891114.
- João Correia, M., Matos, F. (2021). The Impact of Artificial Intelligence on Innovation Management: A Literature Review. Proceedings of the European Conference on Innovation & Entrepreneurship, 222-230. doi: 10.34190/EIE.21.225.
- Jovanović, B., Filipović, J. (2016). ISO 50001 standard-based energy management maturity model - proposal and validation in industry. Journal of cleaner production, 112, 2744-2755. doi: 10.1016/j.jclepro.2015.10.023.
- Karcher, P., Jochem, R. (2015). Success factors and organizational approaches for the implementation of energy management systems according to ISO 50001. TQM Journal, 27(4), pp. 361-381. doi: 10.1108/TQM-01-2015-0016.
- Kostera, M. (2003). Antropologia organizacji. Metodologia badań terenowych. Warszawa: PWN.
- Kshirsagar, R., Tirth, P., Islam, V., Qaiyum, S., Al Duhayyim, S.M., Waji, Y.A. (2022). IOT Based Smart Wastewater Treatment Model for Industry 4.0 Using Artificial Intelligence. Scientific Programming, 1-11. doi: 10.1155/2022/5134013.
- Kvale, S. (2012). Prowadzenie wywiadów. Warszawa: PWN.
- Lisiński, M., Szarucki, M. (2020). Metody badawcze w naukach o zarządzaniu i jakości. Warszawa: PWE.
- Liu, Q. (2022). Analysis of Collaborative Driving Effect of Artificial Intelligence on Knowledge Innovation Management. Scientific Programming, 1-8. doi: 10.1155/2022/ 8223724.
- Lou, B., Wu, L. (2021). Ai on Drugs: Can Artificial Intelligence Accelerate Drug Development? Evidence from a Large-Scale Examination of Bio-Pharma Firms. MIS Quarterly, 45(3), 1451-1482. doi: 10.25300/MISQ/2021/16565.
- Luo, T., Li, G., Yu, N. (2021). Application of Artificial Intelligence and Collaborative Knowledge for Manufacturing Design. Scientific Programming, 1-7. doi: 10.1155/2021/ 5846952.
- McKane, A., Therkelsen, P., Scodel, A., Rao, P., Aghajanzadeh, A., Hirzel, S., ... O'Sullivan, J. (2017). Predicting the quantifiable impacts of ISO 50001 on climate change mitigation. Energy policy, 107, 278-288. doi: 10.1016/j.enpol.2017.04.049.
- Oliveira, L., Dias, R., Rebello, C.M., Martins, M.A., Rodrigues, AE., Ribeiro, A.M., Nogueira, I.B. (2021). Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry. AI, 2(3), 429-443. doi: 10.3390/ai2030027.
- Parker, H., Appel, S.E. (2021). On the Path to Artificial Intelligence: The Effects of a Robotics Solution in a Financial Services Firm. South African Journal of Industrial Engineering, 32(2), 37-47. doi: 10.7166/32-2-2390.
- Patalay, S., Bandlamudi, M.R. (2021). Decision Support System for Stock Portfolio Selection Using Artificial Intelligence and Machine Learning. Ingénierie des Systèmes d'Information, 26(1), 87-93. doi: 10.18280/isi.260109.
- Pouliakas, K. (2021). Understanding Technological Change and Skill Needs: Big Data and Artificial Intelligence Methods. Cedefop Practical Guide 2. Cedefop-European Centre for the Development of Vocational Training.
- Pszczołowski, T. (1978). Mała encyklopedia prakseologii i teorii organizacji. Wrocław: Ossolineum.
- Ryan, W.G., Bernard, R.H. (2000). Data analysis and management methods. In: N.K. Denzin, Y.S. Lincoln (Eds.), Handbook of qualitative research (pp. 769-802). Thousand Oaks, CA: Sage.
- Soon, AI-based robots to replace financial advisers: Oracle study (2021). FRPT - Finance Snapshot, 12-13. Available at: https://search-1ebscohost-1com1fpm2wf310711.hps.bj.uj. edu.pl/login.aspx?direct=true&db=bsu&AN=150342240&site=ehost-live, 2 April 2022.
- Sousa Jabbour, A.B.L., Verdério Júnior, S.A., Jabbour, C.J.C., Leal Filho, W., Campos, L.S., De Castro, R. (2017). Toward greener supply chains: is there a role for the new ISO 50001 approach to energy and carbon management? Energy Efficiency, 10(3), 777-785. doi: 10.1007/s12053-016-9478-z.
- Stake, R.E. (2014). Jakościowe studium przypadku, In: N.K. Denzin, Y.S. Lincoln (Eds.), Metody badań jakościowych, t. 1. Warszawa: PWN.
- Yu, Z., Liang, Z., Xue, L. (2022). A data-driven global innovation system approach and the rise of China's artificial intelligence industry. Regional Studies, 56(4), 619-629. doi: 10.1080/00343404.2021.1954610.
- Yubo, C. (2021). Innovation of enterprise financial management based on machine learning and artificial intelligence technology. Journal of Intelligent & Fuzzy Systems, 40(4), 6767-6778. doi: 10.3233/JIFS-189510.
- Cytowane przez
- ISSN
- 1641-3466
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.29119/1641-3466.2023.172.32