BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Hęćka Patrycja (Wrocław University of Science and Technology, Wrocław, Poland)
Tytuł
The Second Wave of the COVID-19 Pandemic in Poland - Characterised Using FDA Methods
Druga fala COVID-19 w Polsce - charakterystyka z zastosowaniem metod FDA
Źródło
Econometrics. Advances in Applied Data Analysis, 2023, vol. 27, nr 3, s. 20-34, rys., tab., bibliogr. 17 poz.
Ekonometria
Słowa kluczowe
Analiza danych funkcjonalnych, COVID-19
Functional data analysis, COVID-19
Uwagi
Klasyfikacja JEL: C38, C14
streszcz., summ.
Kraj/Region
Polska
Poland
Abstrakt
Głównym celem artykułu była analiza danych funkcjonalnych dotyczących liczby pozytywnych wyników testu, zgonów, ozdrowieńców, osób hospitalizowanych oraz w stanie ciężkim podczas drugiej fali pandemii COVID-19 w Polsce. Pierwszym krokiem była konwersja danych w funkcje gładkie. Następnie przedstawiono analizę głównych składowych funkcjonalnych oraz użycie modelu multiple function-on-function linear regression w celu predykcji liczby osób hospitalizowanych oraz będących w stanie ciężkim z powodu COVID-19 w polskich województwach. Otrzymane wyniki porównano z wcześniej uzyskanymi dla połączonych danych z drugiej i trzeciej fali pandemii.(abstrakt oryginalny)

The aim of this article was to analyse functional data of the number of hospitalised individuals, intensive care patients, positive COVID-19 tests, deaths and convalescents during the second wave of the COVID-19 pandemic in Poland. For this purpose, firstly the author convert data of sixteen voivodeships to smooth functions, and then used the principal component analysis and multiple function-on-function linear regression model to predict the number of hospitalised and intensive care patients due to the COVID-19 infection during the second wave of the pandemic. Finally, the results were compared with those previously obtained for the combined data of the second and third wave of the COVID-19 pandemic in Poland (Hęćka, 2023).(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Acal, C., Escabias, M., Aguilera, A. M., and Valderrama, M. J. (2021). COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression. Mathematics, 9(11), 1237. https:// doi.org/10.3390/math9111237
  2. Boschi, T., Di Iorio, J., Testa, L., Cremona, M. A., and Chiaromonte, F. (2021). Functional Data Analysis Characterizes the Shapes of the First COVID-19 Epidemic Wave in Italy. Scientific Reports, 11(1), 17054. https://doi.org/10.1038/s41598-021-95866-y
  3. de Boor, C. (1978). A Practical Guide to Splines. Mathematics of Computation, 27(149). doi:10.2307/2006241
  4. Cai, X., Xue, L., and Cao, J. (2022). Variable Selection for Multiple Function-on-Function Linear Regression. Statistica Sinica, 32, 1435-1465. doi: https://doi.org/10.5705/ss.202020.0473
  5. Cao, L., and Liu, Q. (2022). COVID-19 Modeling: A Review. Preprint medRxiv 2022.08.22.22279022.
  6. Hęćka, P. (2023). Functional Data Analysis: Application to the Second and Third Wave of the COVID-19 Pandemic in Poland. Preprint arXiv:2306.12390. submitted.
  7. Khanday, A. M. U. D., Rabani, S. T., Khan, Q. R., Rouf, N., and Mohi Ud Din, M. (2020). Machine Learning Based Approaches for Detecting COVID-19 Using Clinical Text Data. International Journal of Information Technology: An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management, 12(3), 731-739. https://doi.org/10.1007/s41870-020-00495-9
  8. Oshinubi, K., Ibrahim, F., Rachdi, M., and Demongeot, J. (2022). Functional Data Analysis: Application to Daily Observation of COVID-19 Prevalence in France. AIMS Mathematics, 7(4), 5347-5385. doi:10.3934/math.2022298
  9. Ramsay, J. O., Graves, S., and Hooker, G. (2020). FDA: Functional Data Analysis in R. R package version 5.1.7. https://CRAN.Rproject.org/package=fda
  10. Ramsay, J. O., and Silverman, B. W. (2010). Functional Data Analysis, Springer Series in Statistics. New York: Springer. Edition Number 2. https://doi.org/10.1007/b98888
  11. Rogalski, M. (2022). COVID-19 w Polsce. Dane zebrane na podstawie raportów podawanych przez Ministerstwo Zdrowia, danych z WSSE, PSSE, Urzędów Wojewódzkich, oraz tych uzyskanych w prośbach o dostęp do informacji publicznej. Retrieved March 1, 2022 from http://bit.ly/covid19-poland
  12. Schuller, B. W., Schuller, D. M., Qian, K., Liu, J., Zheng, H., and Li, X. (2021). COVID-19 and Computer Audition: An Overview on What Speech & Sound Analysis Could Contribute in the SARS-CoV-2 Corona Crisis. Front. Digit. Health, 3, 564906. doi:10.3389/fdgth.2021.564906
  13. Statistical Information Centre. (2021). Area and Population in the Territorial Profile in 2021, Area, Population Number and Density, as of 1 January 2021. Retrieved March 7, 2022 from https://stat.gov.pl/en/topics/population/population/areaand-population-in-the-territorial-profile-in-2021,4,15.html
  14. Tandon, H., Ranjan, P., Chakraborty, T., and Suhag, V. (2022). Coronavirus (COVID-19): ARIMA-based Time-series Analysis to Forecast near Future and the Effect of School Reopening in India. Journal of Health Management, 24(3), 373-388. doi:10.1177/09720634221109087
  15. Ullah, S., and Finch, C. F. (2013). Applications of Functional Data Analysis: A Systematic Review. BMC Medical Research Methodology, 13(43). https://doi.org/10.1186/1471-2288-13-43
  16. Wickham, H. et al. (2016). ggplot2:Elegant Graphics for Data Analysis. New York: Springer-Verlag.
  17. Zhou, T., and Ji, Y. (2020). Semiparametric Bayesian Inference for the Transmission Dynamics of COVID-19 with a State-Space Model. Contemporary Clinical Trials, 97, 106146. https://doi.org/10.1016/j.cct.2020.106146
Cytowane przez
Pokaż
ISSN
1507-3866
Język
eng
URI / DOI
http://dx.doi.org/DOI 10.15611/eada.2023.3.02
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu