BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Abdullahi Umar K. (University of Nigeria, Nsukka, Nigeria), Ugwuowo Fidelis I. (University of Nigeria, Nsukka, Nigeria), Lawson Nuanpan (King Mongkut's University of Technology North Bangkok, Wongsawang, Bangsue, Bangkok, Thailand)
Tytuł
Power Ratio cum Median-based Ratio Estimator of Finite Population Mean with Known Population Median
Źródło
Statistics in Transition, 2023, vol. 24, nr 5, s. 35-44, tab., bibliogr. 12 poz.
Słowa kluczowe
Ludność, Estymatory, Statystyka
Population, Estimators, Statistics
Uwagi
summ.
Abstrakt
The search for an efficient estimator of the finite population mean has been a critical problem to the sample survey research community. This study is motivated by the fact that the conducted literature review showed that no research has developed such an average ratio estimator of the population mean that would utilize both the population and the sample medians of study variable, as well as the Srivastava (1967) estimator at a time. In this paper we proposed the power ratio cum median-based ratio estimator of the finite population mean, which is a function of two ratio estimators in the form of an average. The estimator assumes the population to be homogeneous and skewed. The properties (i.e. the Bias and the Mean Squared Error - MSE) of the proposed estimator were derived alongside its asymptotically optimum MSE. We demonstrated the efficiency of the proposed estimator jointly with its efficiency conditions by comparing it to selected estimators described in the literature. Empirically, a real-life dataset from the literature and a simulation study from two skewed distributions (Gamma and Weibull) were used to examine the efficiency gain. The empirical analysis and simulation study demonstrated that the efficiency gain is significant. Hence, the practical application of the proposed estimator is recommended, especially in socio-economic surveys. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Abdullahi, U. K., Ugwuowo, F. I., (2022). On efficient median-based linear regression estimator for population mean, Communications in Statistics - Theory and Methods, 51(15), pp. 5012-5024.
  2. Cochran, W. G., (1947). Sampling Techniques, 3rd edition, New York: John Wiley and Sons.
  3. Gupta, S., Shabbir, J., (2008). On improvement in estimating the population mean in simple random sampling. Journal of Applied Statistics, 35(5), pp. 559-566.
  4. Lamichhane, R., Singh, S. and Diawara, N., (2017). Improved estimation of population mean using known median of auxiliary variable. Communications in Statistics-Simulation and Computation, 46(4), pp. 2821-2828.
  5. Hansen, M. H., Hurwitz, W. N. and Madow, W. G., (1953). Sample survey methods and theory. New York: John wiley.
  6. Neyman, J., (1938). Contribution to the theory of sampling human populations. Journal of American Statistical Association, 33, pp. 101-116.
  7. Olkin, I., (1958). Multivariate ratio estimation for finite populations. Biometrika, 45, pp. 154-165.
  8. Singh, D., Chaudhary, F. S., (1986). Theory and Analysis of Sample Survey Designs, New Age International Publisher.
  9. Singh, S., Horn S., (1998). An alternative estimator for multi-character surveys, Metrika, 48, pp. 99-107.
  10. Srija, R., Subramani, J., (2018). Ratio cum median based modified ratio estimators with known first and third quartiles. International Journal of Communication and Media Sciences, 5(1), pp. 1-5.
  11. Subramani, J., (2016). A New Median Based Ratio Estimator for Estimation of the Finite Population Mean. Statistics in Transition, 17 (4), pp. 591-604.
  12. Srivstava, S. K., (1967). An estimator using auxiliary information in sample surveys. Calcutta Statistical Association Bulletin, 16, pp. 121-132.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
URI / DOI
http://dx.doi.org/10.59170/stattrans-2023-062
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu