BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Budzanowska-Drzewiecka Małgorzata (Uniwersytet Jagielloński w Krakowie), Lubowiecki-Vikuk Adrian (Szkoła Główna Handlowa w Warszawie)
Tytuł
Rozpoznawanie i pomiar emocji w badaniach doświadczeń klienta
Recognition and Measurement of Emotions in Customer Experience Research
Źródło
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 2023, nr 5 (67), s. 67-77, tab., rys., bibliogr. 53 poz.
Research Papers of Wrocław University of Economics
Słowa kluczowe
Klient, Orientacja na klienta, Zarządzanie doświadczeniem klienta
Customer, Costumer orientation, Customer Experience Management (CEM)
Uwagi
Klasyfikacja JEL: D91, M31
streszcz., summ.
Artykuł naukowy jest efektem stażu naukowego zrealizowanego w Szkole Głównej Handlowej (CRU-1245/2023).
Abstrakt
Badanie doświadczeń klienta wymaga rozwijania metodyki ich pomiaru pozwalającej na uwzględnienie ich złożoności. Jedną z ważnych składowych doświadczeń są emocje, których rozpoznawanie i pomiar stanowi wciąż wyzwanie dla badaczy. Celem artykułu jest dyskusja na temat metod i technik wykorzystywanych do rozpoznawania i pomiaru emocji w badaniach doświadczeń klienta. Szczególną uwagę poświęcono wykorzystaniu technik wywodzących się z neuronauki konsumenckiej, w tym dylematom związanym z sięganiem po automatyczną analizę ekspresji mimicznej. Studia literaturowe pozwoliły na dyskusję dotyczącą korzyści i ograniczeń stosowania automatycznej analizy ekspresji mimicznej w pomiarze doświadczeń klientów. Mimo ograniczeń, mogą one być traktowane jako atrakcyjne uzupełnienie metod i technik pozwalających na uchwycenie emocjonalnych komponentów doświadczenia klienta na różnych etapach (przed zakupem, w jego czasie i po nim).(abstrakt oryginalny)

The study of customer experience requires the development of methodologies which measure such experience and account for its complexity. One important component of customer experience is emotion, the recognition and measurement of which is still a challenge for researchers. The purpose of this article is to discuss methods and techniques used to recognise and measure emotions in customer experience research. Particular attention is paid to the use of techniques derived from consumer neuroscience, including the dilemmas associated with reaching for automatic analysis of facial expressions. The literature review is indicative of the ongoing discussion on the benefits and limitations of using the automatic analysis of facial expressions technique in measuring customer experience. Despite its limitations, such a technique can be an attractive complement to methods and techniques used to capture the emotional components of customer experience at different stages (before, during, and after the purchase).(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Abbott, L. (1955). Quality and Competition: An Essay in Economic Theory. Columbia University Press, New York. https://doi.org/10.7312/abbo92492
  2. Alsharif, A. H., Salleh, N. O. R. Z., Baharun, R. i Yusoff, M. E. (2021). Consumer Behaviour through Neuromarketing Approach. Journal of Contemporary Issues in Business and Government, 27(03). https://doi.org/10.47750/cibg.2021.27.03.048
  3. Babin, B. J., Darden, W. R., University, L. S., Shreveport, L. i Babin, L. A. (1998). Negative Emotions in Marketing Research: Affect or Artifact? Journal of Business Research, 42(3), 271-285. https://doi.org/10.1016/S0148-2963(97)00124-0
  4. Bagozzi, R. P., Brady, M. K. i Huang, M. H. (2022). AI Service and Emotion. Journal of Service Research, 25(4), 499-504. https://doi.org/10.1177/10946705221118579
  5. Bagozzi, R. P., Gopinath, M. i Prashanth, U. N. (1999). The Role of Emotions in Marketing. Journal of the Academy of Marketing Science, 27(2), 184-206.
  6. Becker, L. i Jaakkola, E. (2020). Customer Experience: Fundamental Premises and Implications for Research. Journal of the Academy of Marketing Science, 48(4), 630-648. https://doi.org/10.1007/s11747-019-00718-x
  7. Bell, L., Vogt, J., Willemse, C., Routledge, T., Butler, L. T. i Sakaki, M. (2018). Beyond Self-Report: A Review of Physiological and Neuroscientific Methods to Investigate Consumer Behavior. Frontiers in Psychology, 9, 1-16. https://doi.org/10.3389/fpsyg.2018.01655
  8. Budzanowska-Drzewiecka, M. (2018a). Wkład neuromarketingu do wiedzy na temat reklamy - próba systematyzacji wątków badawczych. Studia Oeconomica Posnaniensia, 6(5), 19-32. https://doi.org/10.18559/soep.2018.5.2
  9. Budzanowska-Drzewiecka, M. (2018b). Zastosowanie neuroobrazowania w badaniach konsumentów - możliwości i ograniczenia. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 525, 197-210.
  10. Bustamante, J. C. (2017). Measuring Customer Experience in Physical Retail Environments. Journal of Service Management, 28(5), 884-913. https://doi.org/10.1108/JOSM-06-2016-0142
  11. Cambria, E., Das, D., Bandyopadhyay, S. i Feraco, A. (2017). Affective Computing and Sentiment Analysis. W: E. Cambria, D. Das, S. Bandyopadhyay, A. Feraco (red.), A Practical Guide to Sentiment Analysis (p. 196). Springer.
  12. Caridakis, G., Castellano, G., Kessous, L., Raouzaiou, A., Malatesta, L., Asteriadis, S. i Karpouzis, K. (2007). Multimodal Emotion Recognition from expressive Faces, Body Gestures and Speech. IFIP International Federation for Information Processing, 247, 375-388. https://doi.org/10.1007/978-0-387-74161-1_41
  13. Cherubino, P., Martinez-Levy, A. C., Caratù, M., Cartocci, G., Di Flumeri, G., Modica, E., Rossi, D., Mancini, M. i Trettel, A. (2019). Consumer Behaviour through the Eyes of Neurophysiological Measures: State-of-the-Art and Future Trends. Computational Intelligence and Neuroscience, 2019, 1-41. https://doi.org/10.1155/2019/1976847
  14. Clatworthy, S. (2022). Doświadczenia klientów. Od idei firmy do zachwytu konsumenta. ICAN Institute.
  15. Danner, L. i Duerrschmid, K. (2018). Automatic facial expressions analysis in consumer science. W: Methods in Consumer Research (p. 231-252). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101743-2.00010-8
  16. Danner, L., Sidorkina, L., Joechl, M., Duerrschmid, K. (2014). Make a Face! Implicit and Explicit Measurement of Facial Expressions Elicited by Orange Juices Using Face Reading Technology. Food Quality and Preference, 32, 167-172. https://doi.org/10.1016/j.foodqual.2013.01.004
  17. Duerden, M. D., Ward, P. J. i Freeman, P. A. (2015). Conceptualizing Structured Experiences: Seeking Interdisciplinary Integration. Journal of Leisure Research, 47(5), 601-620. https://doi.org/10.18666/jlr-2015-v47-i5-6096
  18. Ekman, P. i Rosenberg, E. L. (2005). What the Face RevealsBasic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195179644.001.0001
  19. Farnadi, G., Sitaraman, G., Rohani, M., Kosinski, M., Stillwell, D., Moens, M. F., Davalos, S. i De Cock, M. (2014). How Are You Doing? Emotions and Personality in Facebook. CEUR Workshop Proceedings, 1181, 45-56.
  20. Fasel, B. i Luettin, J. (2003). Automatic facial Expression Analysis: A Survey. Pattern Recognition, 36(1), 259-275. https://doi.org/10.1016/S0031-3203(02)00052-3
  21. Feldman-Barrett, L. (2022). Facial Expressions Do Not Reveal Emotions. Scientific American, https://www.scientificamerican.com/article/darwin-was-wrong-your-facial-expressions-do-not-reveal-your-emotions/
  22. Ferreira, L. B. C., Morais Fabrício, D., Chagas, Hortes, M. N. (2021). Are Facial Emotion Recognition Tasks Adequate for assessing social cognition in older people? A review of the literature. Archives of Gerontology and Geriatrics, 92, 104277. https://doi.org/10.1016/j.archger.2020.104277
  23. Gaur, S. S., Herjanto, H. i Makkar, M. (2014). Review of Emotions Research in Marketing, 2002-2013. Journal of Retailing and Consumer Services, 21(6), 917-923. https://doi.org/10.1016/j.jretconser.2014.08.009
  24. Godovykh, M. i Tasci, A. D. A. (2020). Customer Experience in Tourism: A Review of Definitions, Components, and Measurements. Tourism Management Perspectives, 35, 1-10. https://doi.org/10.1016/j.tmp.2020.100694
  25. Hadinejad, A., Moyle, B. D., Kralj, A. i Scott, N. (2019a). Physiological and Self-Report Methods to the Measurement of Emotion in Tourism. Tourism Recreation Research, 44(4), 466-478. https://doi.org/10.1080/02508281.2019.1604937
  26. Hadinejad, A., Moyle, B. D., Scott, N., Kralj, A. (2019b). Emotional responses to tourism advertisements: The application of FaceReader™. Tourism Recreation Research, 44(1), 131-135. https://doi.org/10.1080/02508281.2018.1505228
  27. Hadinejad, A., Scott, N., Kralj, A. i Moyle, B. (2021). Multi-methods in the Measurement of Emotion in Tourism Marketing. W: R. Nunkoo, V. Teeroovengadum, C. M. Ringle (red.), Handbook of Research Methods for Marketing Management (p. 283--291). Edward Elgar Publishing. https://doi.org/10.4337/9781788976954.00021
  28. Hamilton, L. i Allard, E. (2022). Investigating Mixed Emotion Elicitation Across the Life Span Via Intensity and Networks. Emotions, https://doi.org/10.1037/emo0001177
  29. Hirschman, E. C. i Holbrook, M. B. (1982). Hedonic Consumption: Emerging Concepts, Methods and Propositions. Journal of Marketing, 46(3), 92. https://doi.org/10.2307/1251707
  30. Huang, M. H. (2001). The Theory of Emotions in Marketing. Journal of Business and Psychology, 16(2), 239-247.
  31. Kelter, D., Oatley, K. i Jenkins, J. M. (2021). Zrozumieć emocje. Wydawnictwo Naukowe PWN.
  32. Khare, Khare, S. K., Blanes-Vidal, V., Nadimi, E. S. i Acharya, U. R. (2024). Emotion Recognition and Artificial Intelligence: A Systematic Review (2014-2023) and Research Recommendations. Information Fusion, 102, 102019. https://doi.org/10.1016/j.inffus.2023.102019
  33. Klaus, P. (2015). Measuring Customer Experience. Palgrave Macmillan UK. https://doi.org/10.1057/9781137375469
  34. Kosinski, M. (2021). Facial Recognition Technology Can Expose Political Orientation from Naturalistic Facial Images. Scientific Reports, 11(1), 1-7. https://doi.org/10.1038/s41598-020-79310-1
  35. Kosinski, M., Stillwell, D. i Graepel, T. (2013). Private Traits and Attributes Are Predictable from Digital Records of Human Behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5802-5805. https://doi.org/10.1073/pnas.1218772110
  36. Kranzbühler, A. M., Kleijnen, M. H. P., Morgan, R. E. i Teerling, M. (2018). The Multilevel Nature of Customer Experience Research: An Integrative Review and Research Agenda. International Journal of Management Reviews, 20(2), 433-456. https://doi.org/10.1111/ijmr.12140
  37. Kumar, P., Hollebeek, L. D., Kar, A. K. i Kukk, J. (2022). Charting the intellectual structure of customer experience research. Marketing Intelligence and Planning, https://doi.org/10.1108/MIP-05-2022-0185
  38. Lemon, K. N. i Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420
  39. Lewinski, P., Den Uyl, T. M. i Butler, C. (2014). Automated Facial Coding: Validation of Basic Emotions and FACS AUs in FaceReader. Journal of Neuroscience, Psychology, and Economics, 7(4), 227-236. https://doi.org/10.1037/npe0000028
  40. Manthiou, A., Hickman, E. i Klaus, P. (2020). Beyond good and bad: Challenging the suggested role of emotions in customer experience (CX) research. Journal of Retailing and Consumer Services, 57, 102218. https://doi.org/10.1016/j.jretconser.2020.102218
  41. Martinez, L., Falvello, V. B., Aviezer, H. i Todorov, A. (2016). Contributions of facial expressions and body language to the rapid perception of Dynamic Emotions. Cognition and Emotion, 30(5), 939-952. https://doi.org/10.1080/02699931.2015.1035229
  42. Maximiano-Barreto, M. A., Bomfim, A. J. de L., Borges, M. M., de Moura, A. B., Luchesi, B. M. i Chagas, M. H. N. (2022). Recognition of Facial Expressions of Emotion and Depressive Symptoms Among Caregivers with Different Levels of Empathy Recognition of Facial Expressions of Emotion and Depressive Symptoms Among. Clinical Gerontologist, 1-8. https://doi.org/10.1080/07317115.2021.1937426
  43. Pine, B. J. i Gilmore, J. H. (1998). Welcome to the Experience Economy. Harvard Business Review Press, 76(4), 97-105.
  44. Richins, M. L. (1997). Measuring emotions in the consumption experience. Journal of Consumer Research, 24(2), 127-146. https://doi.org/10.1086/209499
  45. Schmitt, B. H. (1999). Experiential marketing. Journal of Marketing Management, 15(1-3), 53-67.
  46. Skiendziel, T. i Ro, A. G. (2019). Assessing the Convergent Validity between the Automated Emotion Recognition Software Noldus FaceReader 7 and Facial Action Coding System Scoring. PLoS ONE, 14(10), e0223905. https://doi.org/10.1371/journal.pone.0223905
  47. Soodan, V. i Pandey, A. C. (2016). Influence of emotions on consumer buying behavior. Journal of Entrepreneurship, Business and Economics, 4(2), 163-181.
  48. Turek, T. (2017). Possibilities of Using Sentiment Analysis in Prosumption Processes. Ekonomiczne Problemy Usług, 126(1), 285-294. https://doi.org/10.18276/epu.2017.126/2-29
  49. Verhulst, N., De Keyser, A., Gustafsson, A., Shams, P. i Van Vaerenbergh, Y. (2019). Neuroscience in Service Research: An Overview and Discussion of Its Possibilities. Journal of Service Management, 30(5), 621-649. https://doi.org/10.1108/JOSM-05-2019-0135
  50. Verhulst, N., Vermeir, I., Slabbinck, H., Larivière, B., Mauri, M. i Russo, V. (2020). A Neurophysiological Exploration of the Dynamic Nature of Emotions During the Customer Experience. Journal of Retailing and Consumer Services, 57, 102217. https://doi.org/10.1016/j.jretconser.2020.102217
  51. Wedel, M., Bigné, E. i Zhang, J. (2020). Virtual and Augmented Reality: Advancing Research in Consumer Marketing. International Journal of Research in Marketing, 37(3), 443-465. https://doi.org/10.1016/j.ijresmar.2020.04.004
  52. Yaden, D. B., Eichstaedt, J. C., Kern, M. L., Smith, L. K., Buffone, A., Stillwell, D. J., Kosinski, M., Ungar, L. H., Seligman, M. E. P. i Schwartz, H. A. (2018). The Language of Religious Affiliation: Social, Emotional, and cognitive Differences. Social Psychological and Personality Science, 9(4), 444-452. https://doi.org/10.1177/1948550617711228
  53. Yu, C. Y. i Ko, C. H. (2017). Applying FaceReader to Recognize Consumer Emotions in Graphic Styles. Procedia CIRP, 60, 104-109. https://doi.org/10.1016/j.procir.2017.01.014
Cytowane przez
Pokaż
ISSN
1899-3192
Język
pol
URI / DOI
http://dx.doi.org/10.15611/pn.2023.5.06
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu