BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Jallal Muzamil (Bhagwant University, Ajmer, India), Ahmed Aijaz (Bhagwant University, Ajmer, India), Tripathi Rajnee (Bhagwant University, Ajmer, Rajasthan, India)
Tytuł
Extended Odd Frechet-exponential Distribution with Applications Related to the Environment
Źródło
Statistics in Transition, 2024, vol. 25, nr 2, s. 121-136, tab., wykr., bibliogr. 20 poz.
Słowa kluczowe
Metoda największej wiarygodności, Statystyka, Entropia, Funkcje
Maximum likelihood estimation, Statistics, Entropy, Functions
Uwagi
summ.
Abstrakt
In this paper, we attempted to expand the Frechet distribution by employing the T-X family of distributions and named the newly formulated model Extended odd Frechet-exponential distribution (EOFED). Several structural properties, reliability measurements and characteristics were estimated and discussed. The study presents graphs which depict the behaviour of the probability density function, cumulative distribution function and the hazard rate function. The adaptability and flexibility of this novel distribution were achieved through the application of real-world data sets. A simulation study was performed to evaluate and compare the output efficacy of the estimators. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Ahmed, T. F., Dina, A. R., Eldesouky, B. S., (2023). Statistical inference of modified Frechet-exponential distribution with applications to real life data. Applied mathematics and Information sciences, an international journal. Vol. 17, No. 1, pp. 109-124.
  2. Aisha, F., Tahir, M. H., Algarni, A., Imran, M., Jamal, F., (2022). A New Useful Exponential Model with Applications to Quality Control and Actuarial Data. Hindawi, Computational Intelligence and Neuroscience, Vol. 2022, Article ID 2489998,1-27
  3. Ali, M., Khalil, A., Ijaz, M., Saeed, N., (2021). Alpha-Power Exponentiated Inverse Rayleigh Distribution and its applications to real and simulated data. PLoS ONE 16(1), e0245253.
  4. Ali, M., Khalil, A., Mashwani, W. K., Alrajhi, S., Al-marzouki, S., Shah, K., (2022). A novel Frechet-type probability distribution: its properties and applications. Hindawi, Mathematical problems in engineering. Vol. 2022, article ID 2537332, pp. 1-18.
  5. Alsadat, N., Ahmad, A., Jallal, M., Gemeay, A. M., (2023). The novel Kumaraswamy power Frechet distribution with data analysis related to diverse scientific areas. Alexandria engineering journal, Vol. 70, pp. 651-644.
  6. Alshanbari, H. M., Gemeay, A. M., El-bagoury, A. A. H., Khosa, S. K., Hafez, E. H., Muse, A. H., (2022). A novel extension of Frechet distribution:application on real data and simulation. Alexandria engineering journal, Vol. 61, issue 10, pp. 7917- 7938.
  7. Alzaatreh, A., Lee, C., Famoye, F., (2013). A new method for generating families of distributions. Metron, 71, pp. 63-79.
  8. Fisher, R. A., Tippett, L. H. C., (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc Cambridge Philosophical Society, 24(2), pp. 180-190.
  9. Frechet, M., (1927). Sur la loi de probabilite de lecart maximum. Ann. Soc. Polon. de Math., Cracovie, 6, pp. 93-116.
  10. Gumbel, E. J., (1958). Statistics of extremes. New York: Columbia university press. OCLC 180577.
  11. Hamed, M. S., (2020). Extended Poisson-Frechet distribution: Mathematical properties and applications to survival and repair times. Journal of Data Science, 18(2), pp. 319-342.
  12. Haq, M. A., Hashmi, S., Yousuf, H. M., (2017). A new five-parameter Frechet model for extreme values. Pakistan journal of Statistics and Operation Research, Vol(3), pp. 617-632
  13. Klakattawi, H. S., Khormi, A. A., Baharith, L. A., (2023). The new generalized exponentiated Frechet-Weibull distribution: properties, applications and regression model. Hindawi(Wiley) , Complexity, Vol. 2023, article ID 2196572, pp. 1-23.
  14. Klakattawi, H. S., Alsulami, D., Elaal, M. A., Dey, S., Baharith, L., (2022). A new generalized family of distribution based on combining marshal-olkin transformation with TX family. Plos One, Vol. 17, No. 2, Article ID e0263673.
  15. Ocloo, S. K., Brew, L., Nasiru, S., Odoi, B., (2022). Harmonic mixture Frechet distribution: properties and applications to lifetime data. Hindawi, International journal of mathematics and mathematical sciences, Vol. 2022, article ID 6460362, pp. 1-20.
  16. Oguntunde, P. E., Khaleel, M. A., Ahmed, M. T., Okagbue, H. I., (2019). The Gompertz- Frechet distribution, properties and applications. Congent Mathematics and Statistic, 6, 1, 1568662.
  17. Penson, K. A., Gorska, K., (2014). On the Laplace transform of the Frechet distribution. Journal of Mathematical Physics, 55,093501.
  18. Rosin, P., Rammler, E., (1933). The laws governing the Fineness of Powdered Coal. Journal of the Institute of Fuel, 7, pp. 29-36.
  19. Tomitaka, S., Kawasaki, Y., Ide, K., Akutagawa, M., Yamada, H., Furukawa, T. A., (2017). Exponential distribution of total depressive symptom scores in relation to exponential latent trait and item threshold distributions: a simulation study. BMC Research Notes, 10(1), doi:10.1186/s 13104-017-2937-6.
  20. Zubir, S., Ali, M., Hamraz, M., Khan, D. M., Khan, Z., EL-Morshedy, M., Al-Bossly, A., Almaspoor, Z., (2022). A new member of T-X Family with applications in different sectors. Hindawi. Journal of Mathematics, Vol. 2022, Article ID, 1453451, pp. 1-15.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
URI / DOI
http://dx.doi.org/10.59170/stattrans-2024-018
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu