- Autor
- Brygała Magdalena (Gdansk University of Technology), Korol Tomasz (Gdansk University of Technology)
- Tytuł
- Personal Bankruptcy Prediction Using Machine Learning Techniques
- Źródło
- Economics and Business Review, 2024, vol. 10 (24), nr 2, s. 118-142, rys., tab., bibliogr. 56 poz.
- Słowa kluczowe
- Upadłość konsumencka, Bankructwo, Uczenie maszynowe
Consumer bankruptcy, Bankruptcy, Machine learning - Uwagi
- Klasyfikacja JEL: G17, G51
summ. - Abstrakt
- It has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to that, this study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the study is to examine the usefulness of machine learning models such as random forest, XGBoost, LightGBM, AdaBoost, CatBoost, and support vector machines in forecasting personal bankruptcy. The research relies on two samples of households (learning and testing) from the Survey of Consumer Finances, which was conducted in the United States. Among the estimated models, CatBoost and XGBoost showed the highest effectiveness. Among the most important variables used in the models are income, refusal to grant credit, delays in the repayment of liabilities, the revolving debt ratio, and the housing debt ratio. (original abstract)
- Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
- Pełny tekst
- Pokaż
- Bibliografia
- Al Daoud, E. (2019). Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. International Journal of Computer and Information Engineering, 13(1), 6-10.
- Alam, N., Gao, J., & Jones, S. (2021). Corporate failure prediction: An evaluation of deep learning vs discrete hazard models. Journal of International Financial Markets, Institutions and Money, 75, 101455. https://doi.org/10.1016/j.intfin.2021.101455
- Alfaro, E., García, N., Gámez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110-122. https://doi.org/10.1016/j.dss.2007.12.002
- Altman, E.I., & Kuehne, B.J. (2016). Credit markets and bubbles: Is the benign credit cycle over? Economics and Business Review, 2(3), 20-31. https://doi.org/10.18559/ebr.2016.3.3
- Barboza, F., Basso, L.F.C., & Kimura, H. (2021). New metrics and approaches for predicting bankruptcy. Communications in Statistics-Simulation and Computation, 52(6), 2615-2632. https://doi.org/10.1080/03610918.2021.1910837
- Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006
- Berlemann, M., & Salland, J. (2016). The Joneses' income and debt market participation: Empirical evidence from bank account data. Economics Letters, 142, 6-9. https://doi.org/10.1016/j.econlet.2016.02.030
- Bragoli, D., Ferretti, C., Ganugi, P., Marseguerra, G., Mezzogori, D., & Zammori, F. (2022). Machinelearning models for bankruptcy prediction: do industrial variables matter? Spatial Economic Analysis, 17(2), 156-177. https://doi.org/10.1080/17421772.2021.1977377
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
- Brotcke, L. (2022). Time to assess bias in machine learning models for credit decisions. Journal of Risk and Financial Management, 15(4), 165. https://doi.org/10.3390/jrfm15040165
- Brygała, M. (2022). Consumer bankruptcy prediction using balanced and imbalanced data. Risks, 10(2), 24. https://doi.org/10.3390/risks10020024
- Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2020). Explainable AI in fintech risk management. Frontiers in Artificial Intelligence, 3, 26. https://doi.org/10.3389/frai.2020.00026
- Carmona, P., Dwekat, A., & Mardawi, Z. (2022). No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure. Research in International Business and Finance, 61, 101649. https://doi.org/10.1016/j.ribaf.2022.101649
- Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 785-794. https://doi.org/10.1145/2939672.2939785
- CFPB (Consumer Financial Protection Bureau). (2022). Is a lender allowed to consider my age or where my income comes from when deciding whether to give me a loan? https://www.consumerfinance.gov/askcfpb/isalenderallowedtoconsidermyageorwheremyincomecomesfromwhendecidingwhethertogivemealoanen1181/
- Coşer, A., Maermatei, M.M., & Albu, C. (2019). Predictive models for loan default risk assessment. Economic Computation & Economic Cybernetics Studies & Research, 53(2). https://doi.org/10.24818/18423264/53.2.19.09
- de Castro Vieira, J.R., Barboza, F., Sobreiro, V.A., & Kimura, H. (2019). Machine learning models for credit analysis improvements: Predicting lowincome families' default. Applied Soft Computing, 83, 105640. https://doi.org/10.1016/j.asoc.2019.105640
- Dorogush, A.V., Ershov, V., & Gulin, A. (2018). CatBoost: Gradient boosting with categorical features support. https://doi.org/10.48550/arXiv.1810.11363
- Freund, Y., & Schapire, R.E. (1997). A decisiontheoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504
- Garcia, J. (2022). Bankruptcy prediction using synthetic sampling. Machine Learning with Applications, 9, 100343. https://doi.org/10.1016/j.mlwa.2022.100343
- Georgarakos, D., Haliassos, M., & Pasini, G. (2014). Household debt and social interactions. The Review of Financial Studies, 27(5), 1404-1433. https://doi.org/10.1093/rfs/hhu014
- Gramegna, A., & Giudici, P. (2021). SHAP and LIME: An evaluation of discriminative power in credit risk. Frontiers in Artificial Intelligence, 4, 752558. https://doi.org/10.3389/frai.2021.752558
- Halim, Z., Shuhidan, S.M., & Sanusi, Z.M. (2021). Corporation financial distress prediction with deep learning: Analysis of public listed companies in Malaysia. Business Process Management Journal, 274), 1163-1178. https://doi.org/10.1108/bpmj0620200273
- Hancock, J.T., & Khoshgoftaar, T.M. (2020). CatBoost for big data: An interdisciplinary review. Journal of Big Data, 7(1), 94. https://doi.org/10.1186/s40537020003698
- Heo, J., & Yang, J.Y. (2014). AdaBoost based bankruptcy forecasting of Korean construction companies. Applied Soft Computing, 24, 494-499. https://doi.org/10.1016/j.asoc.2014.08.009
- Jabeur, S.B., Gharib, C., MeftehWali, S., & Arfi, W.B. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166, 120658. https://doi.org/10.1016/j.techfore.2021.120658
- Jabeur, S.B., MeftehWali, S., & Viviani, J.L. (2021). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, 334, 679-699. https://doi.org/10.1007/s1047902104187w
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.
- Khare, N., & Sait, S.Y. (2018). Credit card fraud detection using machine learning models and collating machine learning models. International Journal of Pure and Applied Mathematics, 118(20), 825-838.
- Korol, T. (2021). Examining statistical methods in forecasting financial energy of households in Poland and Taiwan. Energies, 14(7), 1821. https://doi.org/10.3390/en14071821
- Korol, T., & Fotiadis, A.K. (2022). Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan. Oeconomia Copernicana, 13(2), 407. https://doi.org/10.24136/oc.2022.013
- Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., & Juhaszova, Z. (2019). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772. https://doi.org/10.24136/oc.2019.034
- Kovacova, M., & Kliestikova, J. (2017). Modelling bankruptcy prediction models in Slovak companies. SHS Web of Conferences, vol. 39, p. 01013. EDP Sciences. https://doi.org/10.1051/shsconf/20173901013
- Le, T., Lee, M.Y., Park, J.R., & Baik, S.W. (2018). Oversampling techniques for bankruptcy prediction: Novel features from a transaction dataset. Symmetry, 10(4), 79. https://doi.org/10.3390/sym10040079
- Letza, S.R., Kalupa, Ł., & Kowalski, T. (2003). Predicting corporate failure: How useful are multidiscriminant analysis models? Economics and Business Review, 3(2), 5-11. https://doi.org/10.18559/ebr.2003.2.494
- Liang, D., Lu, C.C., Tsai, C.F., & Shih, G.A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572. https://doi.org/10.1016/j.ejor.2016.01.012
- Lundberg, S.M., & Lee, S.I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
- Machado, M.R., & Karray, S. (2022). Assessing credit risk of commercial customers using hybrid machine learning algorithms. Expert Systems with Applications, 200, 116889. https://doi.org/10.1016/j.eswa.2022.116889
- Mangalathu, S., Hwang, S.H., & Jeon, J.S. (2020). Failure mode and effects analysis of RC members based on machinelearningbased SHapley Additive exPlanations (SHAP) approach. Engineering Structures, 219, 110927. https://doi.org/10.1016/j.engstruct.2020.110927
- Mihalovič, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics & Sociology, 9(4). https://doi.org/10.14254/2071789x.2016/94/6
- Mo, H., Sun, H., Liu, J., & Wei, S. (2019). Developing window behavior models for residential buildings using XGBoost algorithm. Energy and Buildings, 205, 109564. https://doi.org/10.1016/j.enbuild.2019.109564
- Papík, M., & Papíková, L. (2023). Impacts of crisis on SME bankruptcy prediction models' performance. Expert Systems with Applications, 214, 119072. https://doi.org/10.1016/j.eswa.2022.119072
- Papík, M., Papíková, L., Kajanová, J., & Bečka, M. (2023). CatBoost: The case of bankruptcy prediction. International Conference on Business and Technology, pp. 3-17. Springer.
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 31.
- Saarela, M., & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences, 3, 272. https://doi.org/10.1007/s42452021041489
- Sahiq, A.N.M., Ismail, S., Nor, S.H.S., UlSaufie, A.Z., & Yaacob, W.F.W. (2022, September). Application of logistic regression model on imbalanced data in personal bankruptcy prediction. 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS) (pp. 120-125). IEEE. https://doi.org/10.1109/aidas56890.2022.9918779
- Schonlau, M., & Zou, R.Y. (2020). The random forest algorithm for statistical learning. The Stata Journal, 20(1), 3-29. https://doi.org/10.1177/1536867x20909688
- Shi, S., Tse, R., Luo, W., D'Addona, S., & Pau, G. (2022). Machine learningdriven credit risk: A systemic review. Neural Computing and Applications, 34(17), 14327-14339. https://doi.org/10.1007/s00521022074722
- Son, H., Hyun, C., Phan, D., & Hwang, H.J. (2019). Data analytic approach for bankruptcy prediction. Expert Systems with Applications, 138, 112816. https://doi.org/10.1016/j.eswa.2019.07.033
- Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135-146. https://doi.org/10.1016/j.indmarman.2017.12.019
- Syed Nor, S.H., Ismail, S., & Yap, B.W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157-170. https://doi.org/10.1108/jefas0820180076
- Wang, D.N., Li, L., & Zhao, D. (2022). Corporate finance risk prediction based on LightGBM. Information Sciences, 602, 259-268. https://doi.org/10.1016/j.ins.2022.04.058
- Wu, D.J., Feng, T., Naehrig, M., & Lauter, K.E. (2016). Privately evaluating decision trees and random forests. Proceedings on Privacy Enhancing Technologies, (4), 335-355. https://doi.org/10.1515/popets20160043
- Yen, S.J., & Lee, Y.S. (2009). Clusterbased undersampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3), 5718-5727. https://doi.org/10.1016/j.eswa.2008.06.108
- Zelenkov, Y., & Volodarskiy, N. (2021). Bankruptcy prediction on the base of the unbalanced data using multiobjective selection of classifiers. Expert Systems with Applications, 185, 115559. https://doi.org/10.1016/j.eswa.2021.115559
- Zhang, L., Wang, J., & Liu, Z. (2023). What should lenders be more concerned about prediction model. Expert Systems with Applications, 213, 118938. https://doi.org/10.1016/j.eswa.2022.118938
- Cytowane przez
- ISSN
- 2392-1641
- Język
- eng
- URI / DOI
- https://doi.org/10.18559/ebr.2024.2.1149