BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Garncarek Zbigniew
Tytuł
Studia nad biosyntezą ergosterolu i jego Δ5,7 prekursorów przez szczep Saccharomyces cerevisiae D7
Studies on Biosynthesis of Ergosterol and its Δ5,7 Precursors by Saccharomyces cerevisiae D7
Źródło
Prace Naukowe Akademii Ekonomicznej we Wrocławiu. Seria : Monografie i Opracowania (nr 161), 2004, nr 1053, 105 s., rys., tab., bibliogr. s. 91-99
Słowa kluczowe
Przegląd literatury, Towaroznawstwo, Towaroznawstwo żywności, Biosynteza, Przemysł spożywczy
Literature review, Commodity science, Food commodities, Biosynthesis, Food industry
Uwagi
summ.
Abstrakt
Zaprezentowano wyniki badań nad wpływem czynników środowiskowych, a także niektórych fizjologicznych, na skład ilościowy oraz strukturę Δ5,7 steroli komórek drożdży Saccharomyces cerevisiae. Przeprowadzone doświadczenia posłużyły do określenia optymalnych warunków akumulacji ergosterolu w komórkach drożdży.

The influence of a media composition and some environmental and physiological factors on synthesis of ergosterol and its two precursors ergosta-5,7,22,24(28)-tetraen-3β-ol and ergosta-5,7-dien-3β-ol Saccharomyces cerevisiae D7 has been studied. (short original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Bibliografia
Pokaż
  1. Abe I., Zheng Y.F., Preslwich G.D. (1998). Mechanism-based inhibitors and other active-site targeted inhibitors of oxidosqualene cyclase and squalene cyclase. J. Enzyme Inhib.. 13, 385-398.
  2. Achleitner G., Gaigg B., Krasser A., Kainersdorfer E., Kohlwein S.D., Perktold A., Zelling G., Daum G. (1999). Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur. J. Biochem., 264, 545-553.
  3. Altenstaedt K., Zweytick D., Jandrositz A., Kohlwein S.D., Daum G. (1999). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J. Bacteriol., 181, 6441-6448.
  4. Andreason A.A., Stier T.J. (1953). Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirements for growth in a defined medium. J. Cell. Comp. Physiol., 41, 23-36.
  5. Aoyama Y., Yoshida Y. (1991). Different substrate specificities of lanosterol 14a-demethylase (P450-14DM) of Saccharomyces cerevisiae and rat liver of 24-methylene-24,25-dihydrolanosterol and 24,25-dihydrolanosterol. Biochem. Biophys. Res. Commun., 178, 1064-1071.
  6. Aoyama Y., Yoshida Y. (1992). The 4ß-methyl group of substrate does not affect the activity of lanosterol 14a-demethylase (P45014DM) of yeast: differences between the substrate recognition by yeast and plant sterol 14a-demethylases. Biochem. Biophys. Res. Commun., 183, 1266-1272.
  7. Arneborg N., Hoy C.E., Jorgensen O.B. (1995). The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat. Yeast. 11, 953-959.
  8. Arnezender C., Hampel W.A. (1990). Influence of growth rate on the accumulation of ergosterol in yeast - cells. Biotechnol. Lett., 12, 277-282.
  9. Arthington B.A., Bennett L.G., Skatrud P.L., Guynn C.J., Barbuch R.J., Ulbright C.E., Bard M. (1991). Cloning, disruption, and sequence of the gene encoding yeast C-5 sterol desaturase. Gene. 102, 39-44.
  10. Arthington-Skaggs B.A., Crowell D.N., Yang H., Sturley S.L., Bard M. (1996). Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the postsqualene portion of the yeast ergosterol pathway. FEBS Lett., 392, 161-165.
  11. Ashman W.H., Barbuch R.J., Ulbright C.E., Jarrett H.W., Bard M. (1991). Cloning and disruption of the yeast C-8 sterol isomerase gene. Lipids, 26, 628-632.
  12. Bailey R.B., Parks LW. (1975). Potassium translocation in yeast mitochondria and its relationship to ergosterol biosynthesis. J. Bacteriol., 122, 606-609.
  13. Balliano G., Milla P., Ceruti M., Carrano L., Viola F., Brusa P., Cattel L. (1994). Inhibition of sterol biosynthesis in Saccharomyces cerevisiae and Candida albicans by 22,23-epoxy-2-aza-2,3-dihydro-squalene and the corresponding N-oxide. Antimicrob. Agents Chemother., 38, 1904-1908.
  14. Baloch R.I., Mercer E.I. (1987). Inhibition of sterol 8-7 isomerase and 14-reductase by fenpropi-morph, tridemorph, and fenpropidin in cell-free enzymes systems from Saccharomyces cerevisiae. Phythochemistry, 26, 663-668.
  15. Baloch R.I., Mercer E.I., Wiggins T.E., Baldwin B.C. (1984). Inhibition of ergosterol biosynthesis in Saccharomyces cerevisiae and Ustilago maydis by tridemorph, fenpropimorph, and fenpropidin. Phytochemistry, 23, 2219-2226.
  16. Bammert G.F., Fostel J.M. (2000). Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob. Agents Chemother., 44, 1255-1265.
  17. Bard M., Brimer D.A., Pierson C.A., Lees N.D., Biermann B., Frye L., Koegel C., Barbuch R. (1996). Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Pro. Natl. Acad. Sei. USA, 93, 186-190.
  18. Bard M., Lees N.D., Turi T., Craft D., Cofrin L., Barbuch R., Kogel C., Loper J.C. (1993). Sterol synthesis and viability of erg 11 (cytochrome P450 lanosterol demetylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids, 28, 963-967.
  19. Bednarski W., Reps A. (2001). Biotechnologia żywności, Wydawnictwa Naukowo-Techniczne. Warszawa.
  20. Běhalovâ B., Bláhová M., Běhal V. (1994). Regulation of sterol biosynthesis in Saccharomyces cerevisiae. Folia Microbiol., 39, 287-290.
  21. Běhalovâ B., Hozak P., Bláhová M., Sillinger V. (1992). Effect of nitrogen limitation and sporulation on sterol and lipid formation in Saccharomyces cerevisiae. Folia Microbiol., 37, 442-449.
  22. Běhalovâ B., Vořišek J. ( 1988). Increased sterol formation in Saccharomyces cerevisiae. Analysis of cell components and ultrastructure of vacuoles. Folia Microbiol., 33, 282-287.
  23. Benko A.L., Vaduva G., Martin N.C., Hopper A.K. (2000). Competition between a sterol biosynthe-tic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc. Natl. Acad. Sei. USA, 97, 61-66.
  24. Lees N, D., Bard M., Kirsch D. R. (1997). Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae, fin:] Biochemistry and function of sterols. Edited by E.J. Parish, W.D. Nes. CRC Press, Inc. Boca Raton, New York, London.
  25. Bottema C.K., Parks L.W. (1978). Al4-sterol reductase in Saccharomyces cerevisiae. Biochim. Biophys. Acta, 531, 301-307.
  26. Bottema C.D., Rodriguez R.J., Parks L.W. (1985). Influence of sterol structure on yeast plasma membrane properties, Biochim. Biophys. Acta, 813, 313-320.
  27. Brown C.M., Johnson B. (1970). Influence of the concentration of glucose and galactose on the physiology of Saccharomyces cerevisiae in continuous culture, J. Gen. Microbiol., 64, 279-287.
  28. Casey W.M., Keesler O.A., Parks L.W. (1992). Regulation of portioned sterol biosynthesis in Saccharomyces cerevisiae. J. Bacteriol., 174,7283-7288.
  29. Chen E.J., Kaiser C.A. (2002). Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae. Poc. Nat. Acad. Sei., 99, 14837-14842.
  30. Cibis E., Garncarek Z., Miśkiewicz T., Rychtera M., Borowiak D. (2001). Optimization of ergosterol biosynthesis by Saccharomyces cerevisiae - choice of objective function, Pol. J. Food Nutr. Sei., 10/51. 29-34.
  31. Cobon G.S., Haisam J.M. (1973). The effect of altered membrane sterol composition on the temperature dependence of yeast mitochondiral ATPasc, Biochem. Biophys. Res. Commun., 52, 320-326.
  32. Crowley J.H., Leak F.W., Shianna K.V., Tove S., Parks L.W. (1998). A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae. J. Bacteriol., 180, 4177-4183.
  33. Crowley J.H., Smith S.J.. Leak F.W., Parks L.W. (1996). Aerobic isolation of an ERG24 null mutant of Saccharomyces cerevisiae. .1. Bacteriol., 178, 2991-2993.
  34. Czerniiński A., Iwasiewicz A., Paszek Z., Sikorski A. (1974). Metody statystyczne w doświadczalnictwie. PWN, Warszawa.
  35. Daum G. (1985). Lipids of mitochondria. Biochim. Biophys. Acta, 43, 1-42.
  36. Daum G., Lees N.D., Bard M., Dickson R. (1998). Biochemistry, cell biology and molecular biology of lipids in Saccharomyces cerevisiae. Yeast, 14, 1471-1510.
  37. Daum G., Tuller G., Nemec T., Hrastnik C., Bailiano G., Cattel L., Milla P., Rocco F., Conzelmann A., Vionnet C.. Kelly D.E., Kelly S., Schweizer E., Schuller H.J., Hojad U., Greiner E., Finger K. (1999). Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast, 15, 601-14.
  38. del Castillo Agudo L. (1992). Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Appl. Microbial. Biotechnol., 37, 647-651.
  39. D'Hondt K., Heese-Peck A., Riezman H. (2000). Protein and lipid requirements for endocytosis. Annu. Rev. Genet., 34, 255-295.
  40. Dimster-Denk D., Rine J., Phillips J., Scherer S., Cundiff P., DeBord K., Gilliland D., Hickman S., Jarvis A., Tong L., Asbby M. (1999). Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the genome reporter matrix. J. Lipid Res., 40, 850-860.
  41. Dulaney E.L., Stapley E.O., Simpf K. (1954). Studies on ergosterol production by yeast. Appl. Microbiol., 2, 371-379.
  42. Dynesen J., Smits H.P., Olsson L. (1998). Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl, Microbiol. Biotechnol., 50, 579-582.
  43. Fegueur M., Richard L., Charles AD., Karst F. (1991). Isolation and primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase. Curr Genet., 20.365-372.
  44. Follstad B.D., Wang D.I.C., Stephanopoulos G. (2000). Mitochondria! membrane potential differentiates cells resistant to apoptosis in hybridoma cultures. Eur. J. Biochem., 267, 6534-6540.
  45. Fraenkel D.G. (1982). Metabolism and gene expression, [in:] The molecular biology of the yeast Saccharomyces cerevisiae. (J.N. Strathern, E.W. Jones and J.R. Broach, Eds. Cold Spering Harbor Laboratory, N.Y.
  46. Fronk J., Ząbek J. (1995). Słownik szkolny, biochemia. WSZiP, Warszawa.
  47. Gaber R.F., Copple D.M., Kennedy B.K., Vidal M., Bard M. (1989). The yeast gene ERG6 is required for normal membrane function but in not essential for biosynthesis of the cell-cycle-sparking sterol. Mol. Cell. Biol., 9, 3447-3456.
  48. Gachotte D., Barbuch R., Gaylor J., Nickel E., Bard M. (1998). Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Proc. Natl. Acad. Sei. USA, 95, 13794-13799.
  49. Gachotte D., Eckstein J., Barbuch R., Hughes T., Roberts C., Bard M. (2001). A novel gene conserved from yeast to humans in involved in sterol biosynthesis. J. Lipid Res., 42, 150-154.
  50. Gachotte D., Pierson C.A., Lees N.D., Barbuch R., Koegel C., Bard M. (1997). A yeast sterol auxo-troph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proc. Natl. Acad. Sei. USA. 94, 11173-11178.
  51. Gachotte D., Sen S.E., Eckstein J., Barbuch R., Krieger M., Ray B.D., Bard M. (1999). Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. Proc. Natl. Acad. Sei. USA, 96, 12655-12660.
  52. Gaigg B, Simbeni R., Hrastnik C., Paltauf F., Daum G. (1995). Characterization of a microsomal subtraction associated with mitochondria of the yeast, Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria. Biochim. Biophys. Acta, 1234, 214-220.
  53. Garncarek Z., Cibis E., Miśkiewicz T. (1997). Możliwości regulowania procesu produkcji ergoste-rolu przez drożdże Saccharomyces cerevisiae. Materiały II Ogólnopolskiego Sympozjum pt. Biotechnologia w Uczelniach Technicznych, Warszawa, 111-121.
  54. Garncarek Z., Fiala J., Kent C.A. (1998). Aktywność mitochondrialna drożdży Saccharomyces cerevisiae w czasie hodowli wstrząsarkowej i fed-batch. Materiały XXIX Sesji Naukowej KTiChŻ PAN, Olsztyn, 136.
  55. Garncarek Z., Fiala J., Kent C.A. (1999). Wykorzystanie cytofluorymetrycznych oznaczeń DNA, białka i steroli do charakterystyki populacji komórek Saccharomyces cerevisiae. Materiały XXX Sesji Naukowej KTiChŻ PAN, Kraków, 328.
  56. Garncarek Z., Garncarek B. (2000). Wpływ składu podłoża na ilość Δ 5,7'-nianasyconych steroli w komórkach drożdży. Materiały XXXI Sesji Naukowej KTiChŻ PAN, Poznań, 245.
  57. Garncarek Z., Garncarek B. (2002). Porównanie metod oznaczania zawartości wolnych i zestryfikowanych delta- 5,7 - nienasyconych steroli w komórkach Saccharomyces cerevisiae. Materiały Konferencji Naukowej Yeast in food Processing - Tradition and Future, Wrocław, 74.
  58. Garncarek Z.. Gamcarek B. (2002). Zmiany jakościowe i ilościowe Δ 5,7 steroli komórek Saccharomyces cerevisiae w hodowli okresowej na etanolu. Materiały XXXIII Sesji Naukowej KTiChŻ PAN, Lublin, 248.
  59. Garncarek Z., Garncarek B. (2003). Zmiany składu Δ 5,7 steroli komórek Saccharomyces cerevisiae w czasie hodowli okresowej na maltozie. Materiały XXXIV Sesji Naukowej KNoŻ PAN, Wrocław. 252.
  60. Guillamon J.M., van Riel N.A., Giuseppin M.L., Verrips C.T. (2001). The glutamate synthase (GOGAT) of Saccharomyces cerevisiae plays an important role in central nitrogen metabolism. FEMS Yeast Res., 1, 169-175.
  61. Hammerle T., Loffler M. (1989). Simultaneous analysis of mitochondrial activity and DNA content in Ehrlich ascites tumor cells by dual parameter flow cytometry. Histochemistry, 93, 207-212.
  62. Harma T., Brondijk C., Konings W.N., Poolman B. (2001). Regulation of maltose transport in Saccharomyces cerevisiae. Arch. Microbiol., 176, 96-105.
  63. Hartman P.O., Polak A. (1993). The action of amorolfine: From molecule to cell. Clin. Dermatol., 7, 27.
  64. Hata S., Nishino T., Ariga N., Katsuki H. (1982). Effect of detergents on sterol synthesis in cell-free system of yeast. J. Lipid Res., 23, 803-810.
  65. Hata S., Nishino T., Katsuki H., Aoyama Y., Yoshida Y. (1983). Two species of cytochrome P-450 involved in ergosterol biosynthesis of yeast. Biochem. Biophys. Res. Commun., 116, 162-166.
  66. Hata S., Nishino T., Komori M., Katsuki H. (1981). Involvement of cytochrome P450 in (22-desatu-ration in ergosterol biosynthesis of yeast. Biochem. Biophys. Res. Commun., 116, 162-166.
  67. He X., Zhang B., Tan H. (2003). Overexpression of sterol C-24(28) reductase increases ergosterol production in Saccharomyces cerevisiae. Biotechnol. Lett., 25, 773-779-8.
  68. Heiniger HJ., Kandutsch A.A., Chen H.W. (1976). Depletion of L-cell sterol depresses endocytosis. Nature, 263, 515-517.
  69. Henry K.W., Nickels J.T., Edlind T.D. (2002). ROX1 and ERG regulation in Saccharomyces cerevisiae: implications for antifungal susceptibility. Eukaryot. Cell., 1, 1041-1044.
  70. Herskowitz I. ( 1988). Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol. Rev., 52, 536-553.
  71. Hesse-Peck A., Pichler H., Zanolari B., Watanabe R., Daum G., Riezman H. (2002). Multiple function of sterols in yeast endocytosis. Mol. Biol. Cell., 13, 2664-2680.
  72. Higgins V.J., Beckhouse A.C., Oliver A.D., Rogers P.J., Dawes I.W. (2003). Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative response during the initial stage of an industrial lager fermentation. Appl. Environ. Microbiol., 69, 4777-87.
  73. Holcomb C.L., Hansen W.J., Etcheverry T., Schekman R. (1988). Secretory vesicles externalize the major plasma membrane ATPase in yeast. J. Cell. Biol., 106, 641-648.
  74. Hossack J.A., Belk D.M., Rose A.H. (1977). Environmentally-induced changes in the neutral lipids and intracellular vesicles of Saccharomyces cerevisiae and Kluyveromyces fragilis. Arch. Microbiol., 114, 137-142.
  75. Hunter K., Rose A. (1972). Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochem. Biophys. Acta, 260, 639-653.
  76. James T.C., Campbell S., Donnelly D., Bond U. (2003). Transcription profile of brewery yeast under fermentation conditions. J. Appl. Microbiol., 94, 432-448.
  77. Janssen P.A.J., Vanden Bossche H. (1986). Mode of action of cytochrome P-450 monooxygenase inhibitors: Focus on azole derivatives. Arch. Pharm. Chem. Sei., 15, 23.
  78. Jennigs S.M., Tsay Y.H., Fisch T.M., Robinson G.W. (1991). Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc. Natl. Acad. Sei. USA, 88, 6038-6042.
  79. Jensen-Pergakes K., Guo Z., Giattina M., Sturley S.L., Bard M. (2001). Transcriptional regulation of two sterol estrification genes in yeast Saccharomyces cerevisiae. J. Bacteriol., 183, 4950-4957.
  80. Kalb V.F., Woods C.W., Turi T.G., Dey C.R., Sutler T.R., Loper J.C. (1987). Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA, 6, 529-537.
  81. Kalo M., Wickner W. (2001). Ergosterol is required for the Secl8/ATP-dependent priming step of homotypic vacuole fusion. EMBO J., 20, 4035-4040.
  82. Kelly S.L., Lamb D.C., Baldwin B.C., Corran A.J., Kelly D.E. (1997). Characterization ofSaccha-romyces cerevisiae CYP61, sterol Δ 22-desaturase. and inhibition by azole antifungal agents. J. Biol. Chem.. 272, 9986-9988.
  83. Kelly S.L., Lamb D.C., Corran A.J., Baldwin B.C., Parks L.W., Kelly D.E. (1995). Purification and reconstruction of activity of Saccharomyces cerevisiae P450 61, a sterol A22-desaturase. FEBS Lett., 377.217-220.
  84. Kennedy M.A.. Barbuch R., Bard M. (1999). Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta, 1445, 110-122.
  85. Kennedy M.A., Bard M. (2001). Positive and negative regulation of squalene synthase (ERG9). an ergosterol biosynthetic gene, in Saccharomyces cerevisiae. Biochim. Biophys. Acta, 1517, 177-189.
  86. Kennedy M.A., Johnson T.A., Lees N.D., Barbuch R., Eckstein J.A., Bard M. (2000). Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Lipids, 35, 257-262.
  87. Klein C.J.L, Olsson L., Nielsen J. (1998). Glucose control in Saccharomyces cerevisiae the role of MIGI in metabolic functions. Microbiology, 144, 13-24.
  88. Kontoyiannis D.P. (2000). Modulation of fluconazole sensitivity by the interaction of mitochondria and Erg3p in Saccharomyces cerevisiae. J. Antimcob. Chemother., 46, 191-197.
  89. Kontoyiannis D.P. (2000). Efflux-mediated reistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae. J. Antimcob. Chemother., 46, 199-203.
  90. Kuswick-Rabiega G., Rilling H.C. (1987). Squalene synthetase. Solubilization and partial purification of squalene synthetase, copurification of presqualene pyrophosphate and squalene synthetase activities. J. Biol. Chem., 262, 1505-1509.
  91. Lai M.H., Bard M., Pierson C.A., Alexander J.F., Goebl M., Carter G.T., Kirsch D.R. (1994). The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene. 140,41-49.
  92. Leber R., Landl K., Zinser E., Ahorn H., Spok A., Kohlwein S.D., Turnowsky F., Daum G. (1998). Dual localization of squalene epoxidase, Erglp, in yeast reflects a relationship between the endo-plasmic reticulum and lipid particles. Mol. Biol. Cell., 9, 375-386.
  93. Leber R., Zenz R., Schröttner K., Fuchsbichler S., Pühringer B., Turnowsky F. (2001). A novel sequence element is involved in the transcriptional regulation of expression of the ERGI (squalene epoxidase) gene in Saccharomyces cerevisiae. Eur. J. Biochem., 268, 914-924.
  94. Lees N.D., Skaggs B., Kirsch D.R., Bard M. (1995). Cloning of the late genes in the ergosterol bio-synthetic pathway of Saccharomyces cerevisiae - a review. Lipids, 30, 221- 226.
  95. Lewis T.A., Rodriguez R.J., Parks L.W. (1987). Relationship between intracellular sterol content and sterol esterification and hydrolysis in Saccharomyces cerevisiae. Biochim. Biophys. Acta, 921: 205-212.
  96. Liangtao L., Kaplan J. (1996). Characterization of yeast methyl sterol oxidase (ERG25) and identification of human homologue. J. Biol. Chem., 271, 1627-16933.
  97. Lorentz R.T.. Casey W.M., Parks L.W. (1989). Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae. J. Bacteriol., 171, 6169-6173.
  98. Lorenz R.T., Parks L.W. (1991). Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae. Lipids, 26, 598-603.
  99. Lorenz R.T., Parks L.W. (1992). Cloning, sequencing and disruption of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae. DNA Cell Biol., 11, 685-692.
  100. Low C., Parks L.W. (1987). Sterol and phospholipids acyl chain alterations in Saccharomyces cerevisiae secretion mutants as a function of temperature stress. Lipids, 10, 715-720.
  101. Lucero P., Moreno E., Lagunas R. (2002). Catabolite inactivation of sugar transporters in Saccharomyces cerevisiae is inhibited by the presence of nitrogen source. FEMS Yeast Res., 1, 307-314.
  102. Lucero P., Penalver É., Moreno E.. Lagunas R. (1997). Moderate concentrations of ethanol inhibit endocytosis of the yeast maltose transporter. Appl. Envirom. Microbiol., 63, 3831-3836.
  103. Lucero P., Penalver É., Vela L., Lagunas R. (2000). Monoubiquitination is sufficient to signal in-ternalization of the maltose transporter in Sacckaromyces cerevisiae. J. Bacteriol., 102, 241-243.
  104. Luszniewicz A., Słaby T. (2001). Statystyka z pakietem komputerowym STATISTICATM PL Teoria i zastosowania. Wydawnictwo C.H. Beck, Warszawa.
  105. Marcireau C., Joets J., Pousset D., Guilloton M., Karst F. (1996). FEN2: a gene implicated in the catabolite repression-mediated regulation of ergosterol biosynthesis in yeast. Yeast, 12, 531-539.
  106. Marcireau C., Guyonnet D., Karst F. (1992). Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr. Genet.. 22, 267-272.
  107. M'Baya B., Fegueur M., Servouse M., Karst F. (1989). Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids, 24, 1020-1023.
  108. McCammon M.T., Hartmann M.A., Bottema C.D.K., Parks L.W. (I984). Sterol methylation in Saccharomyces cerevisiae. J. Bacterial., 157, 475-483.
  109. Méjanelle L., Lòpez J.F., Gunde-Cimerman N., Grimait J.O. (2001 ). Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J. Lipid Res., 42, 352-358.^ Mikhailova N.P., Valinietse M.I., Bauman V.K., V'iunov K.A. (1988). Evaluation of the vitamin D activity of yeasts with altered sterol metabolism, Prikl. Biokhim. Mikrobiol., 24. 98-101.
  110. Milla P., Athenstaedt K., Viola F., Oliaro-Bosso S., Kohlwein S.D., Daum G., Balliano G. (2001). Yeast oxidosquqlene cyclase (Erg7p) is a major component of lipid particles. J. Biol. Chem., 277. 2406-2412.
  111. Mo C., Milla P., Athenstaedt K., Ott R., Balliano G., Daum G., Bard M. (2003). In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. Biochim. Biophys. Acta, 1633, 68-74.
  112. Mo C., Valachovic M.. Randall S.K., Nickels J.T., Bard M. (2002). Protein-protein interactions among C-4 demetylation enzymes ivolved in yeast sterol biosynthesis. Proc. Natl. Acad. Sei. USA. 99, 9739-9744.
  113. Mookhtiar K.A., Kalinowski S.S., Zhang D., Poulter C.D. (1994). Yeast squalene synthase. A mechanism for addition of substrates and activation by NADPH. J. Biol. Chem., 269, 11201-11207.
  114. Moore J.T., Gaylor J.L. (1969). Isolation and purification of an S-adenosylmethionine: A24-sterol methyltransferase from yeast. J. Biol. Chem., 224, 6334-6340.
  115. Moseichuk A.V., Vyunov K.A., Mikhailova N.P., Rodina L.V., Komarov e.V. (1985). Sterol composition of nystatin-sensitive and nystatin resistant strains of Saccharomyces cerevisiae. Prikl. Biokhim. Mikrobiol.. 21. 631-633.
  116. Munn A.L., Hesse-Peck A., Stevenson B.J., Pichler H., Riezman H. (I999). Specific sterols required for the internalization step of endocytosis in yeast. Mol. Biol. Cell., 10. 3943-3957.
  117. Müller S., Lösche A., Bley T. (1992). Flow-cytometric investigation of sterol content and proliferation activity of yeast. Acta Biotechnol., 12, 365-375.
  118. Neal W.D., Parks L.W. (1977). Sterol 24(28) methylene reductase in Saccharomyces cerevisiae. J. Bacteriol., 129, 1375-1378.
  119. Nes W.D., McCourt B.S., Zhou W., Ma J., Peek L.A., Brennan M. (1998). Overexpression, purification, and stereochemical studies of the recombinant S-adenosyl-L-methionine Δ24(25) - to Δ24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae sterol methyl transferase. Arch. Biochem. Biophys., 353, 297-311.
  120. Nishino T., Hata S., Osumi T., Katsuki H. (1980). Biosynthesis of ergosterol in cell-free system of yeast. J. Biochem.. 88, 247-254.
  121. Nose H., Fushimi H., Seki A., Sasaki T., Watabe H., Hoshiko S. (2002). PFF1163A, a novel anti-fungal agent, inhibit ergosterol biosynthesis at C-4 sterol methyl oxidase. J. Antibiot., (Tokyo). 55. 969-974.
  122. Novotny C., Behalovä B., Struzinsky R., Novak M., and Zajicek J. (1988). Sterol composition of a 5,7-sterol-rich strain of Saccharomyces cerevisiae during batch growth. Folia Microbiol., 33: 377-385.
  123. Novotny C., Dolezalova L., Flieger M., Panos J., and Karst F. (1992). Ethanol-induced death and lipid composition of Saccharomyces cerevisiae: A comparative study of the role of sterols. Folia Microbiol., 37: 287-288.
  124. Olson B.H., Johnson M.J. (1949). Factors producing high yeast yiealds in synthetic media. J. Bact., 57. 235-246.
  125. Osumi T., Nishino T., Katsuki H. (1979). Studies on the delta 5-desaturation in ergosterol biosynthesis in yeast. J. Biochem. (Tokyo), 85, 819-826.
  126. Palermo L.M., Leak F.W.. Tove S., Parks L.W. (1997). Assessment of the essentiality of ERG genes late in ergosterol biosynthesis in Saccharomyces cerevisiae. Curr. Genet., 32, 93-99.
  127. Parascandola P., de Alreriis E. (1996). Pattern of growth and respiratory activity of Saccharomyces cerevisiae (baker's yeast) cells growing entrapped in an insolubilized gelatin gel. Biotechnol. Appl. Biochem., 23, 7-12.
  128. Parks L.W. (1978). Metabolism of sterols in yeast. Crit. Rev. Microbiol., 6. 301-41.
  129. Parks L.W., Bailey R.B. (1975). Yeast sterol esters and their relationship to the growth of yeast. J. Bacteriol., 124, 606-612.
  130. Parks L.W., Casy W.M. (1995). Physiological implications of sterol biosynthesis in yeast. Annu. Rev. Microbiol.. 49. 95-116.
  131. Patton J.L., Srinivasan B.. Dickson R.C., Lester R.L. (1992). Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae. J. Bacteriol., 174, 7180-7184.
  132. Phowchinda O., Délia-Dupuy M.L.. Strehaiano P. (1995). Effects of acetic acid on growth and fermentative activity of Saccharomyces cerevisiae. Biotechnol. Lett., 17. 237-242.
  133. Pichler H., Gaigg B., Hrastnik C., Achleitner G., Kohlwein S.D., Zelling G., Perktold A., Daum G. (2001). A subfraction of the endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur. J. Biochem., 268, 2351-2361.
  134. Pichvá A., Beran K., Bĕhalovă B.. Zajicek J. (1985). Ergosterol synthesis and population analysis of fed-batch fermentation in Saccharomyces cerevisiae. Folia Microbiol. (Praha), 30, 134-140.
  135. Pierc M.M.. Maddelein M.L., Robert B.T., Wickner R.B. (2001). A novel Rtg2p activity regulates nitrogen catabolism in yeast. Poc. Nat. Acad. Sei., 98, 13213-13218.
  136. Porro D., Smeraldi C., Ranzi B.M.. Martegani E., Alberghina L. (1994). Analysis of the respiratory activity in growing budding yeast by flow cytometry. ECB6: Proceedings of the 6th European Congress on Biotechnology, edited by L. Alberghina, L. Frontali, P. Sensi, Elsevier Science B.V. 577-580.
  137. Powderly W.O., Kobayashi G.S., Herzig G.P., Medoff G. (1988). Amphotericin B- resistant yeast infection in severely immunocompromised patients. Am. J. Med., 84, 826.
  138. Ramgopal M., Bloch K. (1983). Sterol synergism in yeast. Poc. Nat. Acad. Sei., 80, 712-715.
  139. Reed G., Peppier H.J. (1973). Yeast Technology. The AVI Publishing Company INC. Westport. Connecticut.
  140. Rodriguez R.J., Low C., Bottema C.D., Parks L.W. (1985). Multiple function for sterols in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 837, 336-343.
  141. Rodriguez R.J., Parks L.W. (1983). Structural and physiological features of sterols necessary to satisfy bulk membrane and sparking requirements in yeast sterol auxotrophs. Arch. Biochem. Biophys., 225, 861-871.
  142. Roels J.A. (1983). Energetics and kinetics in biotechnology. Elsevier Biomedical Press. Amsterdam, New York.
  143. Ronot X., Benel L., Adolphe M., Mounolu J.C. (1986). Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol. Cell., 57, 1-7.
  144. Ryder N.S. (1991). Squalene epoxidase as target for ally lamines. Biochem. Soc. Trans., 19, 774.
  145. Salerno I.F., Parks L.W. (1983). Sterol uptake in the yeast Saccharomvces cerevisiae. Biochim. Biophys. Acta, 752, 240-243.
  146. Schmitt D., Callan K., Gruissem W. (1996). Molecular and biochemical characterization of tomato farnesyl-protein transferase. Plant Physiol., 112, 76-777.
  147. Seeley E.S., Kato M., Marogolis N., Wickner W., Eitzen G. (2002). Genomic analysis of homotypic vacuole fusion. Mol. Biol. Cell. 13, 782-794.
  148. Shianna K.V., Dotson W.D.. Tove S., Parks LW. (2001). Identification of a UPC2 homolog in Saccharomyces cerevisiae and its involvement in aerobic sterol uptake. J. Bacteriol., 183, 830-834.
  149. Shimizu H., Araki K., Shioya S., Suga K. (1991). Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Biotechnol. Bioeng., 38, 196-205.
  150. Shimizu I., Katsuki H. (1975). Effect of temperature on ergosterol biosynthesis in yeast. J. Biochem., 77, 1023-1027.
  151. Singh B., Oberoi O.K., Sharma S.C. (1990). Effect of pH stress on lipid composition of Saccharomyces cerevisiae. Indian J. Exp. Biol., 28, 430-433.
  152. Sisiak K., Rilling H.C. (1988). Purification to homogeneity and some properties of squalene synthetase. Arch. Biochem. Biophys., 260, 622-627.
  153. Skaggs B.A., Alexander J.F., Pierson C.A., Schweitzer K.S., Chun K.T., Koegel C., Barbuch R., Bard M. (1996). Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. Gene, 169, 105-109.
  154. Skowronek P., Krummeck G., Haferkamp O., Rodel G. (1990). Flow cytometry as a tool to determinate respiratory-component and respiratory-deficient yeast cells. CUIT Genet., 18(3). 265-267.
  155. Smith S.J., Crowley J.H., Parks L.W. (1996). Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Moll. Cell. Biol., 16, 5427-5432.
  156. Smith S.J., Parks L.W. (1997). Requirement of heme to replace the sparking sterol function in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1345, 71-76.
  157. Soumalainen H., Oura E. (1971). Yeast nutrition and solute uptake. In The Yeast, v2, edited by Rose A.M. and Harrison J.S. Academic Press, London.
  158. Starr P.R., Parks L.W. ( 1962). Some factors affecting sterol formation in Saccharomyces cerevisiae. J. Bacterial., 83, 1042-1046.
  159. Stoj C., Kosman D.J. (2003). Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett., 554. 422-426.
  160. Stolz J., Sauer N. (1999). The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter. J. Biol. Chem., 274, 18747-18752.
  161. Sturley S.L. (2000). Conservation of eukaryotic sterol homeostasis: new insights from studies in budding yeast. Biochim. Biophys. Acta, 1529, 155-163.
  162. Subbiah M.T., Abplanalp W. (2003). Ergosterol (major sterol of baker's and brewery's yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products, Int. J. Vitam. Nutr. Res., 73, 19-23.
  163. Swan T.M., Watson K. (1998). Stress tolerance in a yeast auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol. Lett., 169, 191-197.
  164. Taylor F.R., Parks L.W. (1978). Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J. Bacterol., 136, 531-537.
  165. Tuller G., Daum G. (1995). Import of sterols into mitochondria of the yeast Saccharomyces cerevisiae. FEBS Lett., 372, 29-32.
  166. Tuller G., Nemec T., Hrastnik C., Daum G. (1999). Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast, 15, 1555-1564.
  167. Turi T.G., Kalb V.F., Loper J.C. (1991). Cytochrome P450 lanosterol 14 alpha-demethylase (ERG11) and manganese Superoxide dismutase (SOD1) are adjacent genes in Saccharomyces cerevisiae. Yeast, 7, 627-630.
  168. Tuszyński T. (1996). Oddziaływanie jonów metali w środowiskach biologicznych - wzrost drożdży i fermentacja etanolowa, I Szkoła Technologii Fermentacji - Drożdże w technologiach fermentacyjnych. Akademia Rolnicza - Wrocław, 278-281.
  169. van der Merwe O.K., Cooper T.G., van Vuuren H.J.J (2001 ). Ammonia regulates VID30 expression and Vid.iOp function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia. J. Biol. Chem., 276, 28659--28666.
  170. Veen M., Stahl U., Lang C. (2003). Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Research. 4, 87-95.
  171. Venkatramesh M., Quo D., Jia Z., Nes W.D. (1996). Mechanism and structural requirements for transformations of substrates by the S-adenosyl-L-methionine: Δ24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Biochim. Biophys. Acta, 1299, 313-324.
  172. Vik A., Rine J. (2001). Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol. Cell. Biol., 21, 6395-6405.
  173. Valachovic, M., Horonskä L., Hapala I. (2001). Anaerbiosis induces complex changes in sterol esterifiacation pattern in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett., 9844, 1-5.
  174. Walker-Caprioglio, H.M., Casey W.M. and Parks L.W. (1990). Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol. Appl. Env. Microbiol., 56. 2853-2857.
  175. Yang H., Bard M., Bruner D.A., Gleeson A.. Deckelbaum R.J., Alijnovic G.. Fohl T.M., Rothstein R.. Sturley S. (1996). Sterol esterification in yeast: a two-gene process. Science, 272, 1353-1356.
  176. Yang H.C., Ron L.A. (2003). Toxicity of metal ions used in dental alloys: a study in the yeast Saccharomyces cerevisiae. Drug Chem. Toxicol., 26, 75-85.
  177. Zhang B., He X., Tie C., Liu Y. (1999). Construction of high ergosterol-producing yeast strain and study on the optimal conditions for culture. Chin. J. Biotechnol., 15, 43-49.
  178. Zinser E.. Paltauf F., Daum G. (1993). Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J. Bacteriol., 175, 2853-2858.
  179. Zinser E., Sperka-Gottlieb C.D.M., Fasch E.-V., Kohlwein S.D., Paltauf F., Daum G. (1991). Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eucaryote Saccharomyces cerevisiae. J. Bacteriol., 173, 2026-2034.
  180. Zweytick D., Hrastnik C., Kohlwein S.D., Daum G. (2000). Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, erg4p, from the yeast Saccharomyces cerevisiae. FEBS Lett., 470, 83-87.
  181. Zweytic D., Leitner E., Kohlwein S.A., Yu C., Rothblatt J., Daum G. (2000). Contribution of Arelp and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur. J. Biochem.. 267, 12075-1082.
Cytowane przez
Pokaż
ISSN
0324-8445
0239-8532
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu